• Title/Summary/Keyword: computational fluid dDynamics (CFD)

Search Result 366, Processing Time 0.026 seconds

A high-resolution mapping of wind energy potentials for Mauritius using Computational Fluid Dynamics (CFD)

  • Dhunny, Asma Z.;Lollchund, Michel R.;Rughooputh, Soonil D.D.V.
    • Wind and Structures
    • /
    • v.20 no.4
    • /
    • pp.565-578
    • /
    • 2015
  • A wind energy assessment is an integrated analysis of the potential of wind energy resources of a particular area. In this work, the wind energy potentials for Mauritius have been assessed using a Computational Fluid Dynamics (CFD) model. The approach employed in this work aims to enhance the assessment of wind energy potentials for the siting of large-scale wind farms in the island. Validation of the model is done by comparing simulated wind speed data to experimental ones measured at specific locations over the island. The local wind velocity resulting from the CFD simulations are used to compute the weighted-sum power density including annual directional inflow variations determined by wind roses. The model is used to generate contour maps of velocity and power, for Mauritius at a resolution of 500 m.

CFD-based Path Planning and Flight Safety Assessment for Drone Operation in Urban Areas (CFD를 이용한 도심내 드론 비행 경로 계획 및 안전성 평가)

  • Geon-Hong Kim;Ayoung Hwang;Hyoyeong Kim;Yeonmyeong Kim
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.2
    • /
    • pp.40-46
    • /
    • 2024
  • This study suggests a method to enhance drone flight path planning and safety evaluation in urban areas using Computational Fluid Dynamics (CFD). As the use of drones in urban environments has been growing rapidly, there is a lack of established methods for path planning and safety evaluation, which leads to a risky approach relying on experimental methods. Therefore, this research takes into account the intricate 3D fluid dynamics between drones and buildings by employing CFD to quantitatively plan flight paths and evaluate their safety. To accomplish this, the study focuses on Gimcheon Innovation City as the target area and collects relevant terrain and building data, and selects prospective flight routes. CFD analysis is then carried out to gather essential data for flight simulations and safety assessment. The safety assessments are conducted based on environmental fluid dynamics when the drone operates along the proposed flight paths

AERODYNAMIC ANALYSIS AND COMPARISON OF EXPERIMENTAL DATA FOR 2-BLADED VERTICAL AXIS WIND TURBINE (2엽형 수직축 풍력발전기의 유동해석 및 실험 비교)

  • Hwang, M.H.;Kim, D.H.;Lee, J.W.;Oh, M.W.;Kim, M.H.;Ryu, G.J.
    • Journal of computational fluids engineering
    • /
    • v.15 no.4
    • /
    • pp.85-91
    • /
    • 2010
  • In this study, aerodynamic analyses based on unsteady computational fluid dynamics (CFD) have been conducted for a 2-bladed vertical-axis wind turbine (VAWT) configuration. Reynolds-averaged Navier-Stokes equations with standard $k-{\varepsilon}$ and SST $k-{\varepsilon}$ turbulence models are solved for unsteady flow problems. The experiment model of 2-bladed VAWT has been designed and tested in this study. Aerodynamic experiment of the present VAWT model are effectively conducted using the vehicle mounted testing system. The comparison result between the experiment and the computational fluid dynamics (CFD) analysis are presented in order to verify the accuracy of CFD modeling with different turbulent models.

Efficiency Prediction of the Particle Removal Efficiency of Multi Inner Stage(MIS) Cyclone by Computational Fluid Dynamics(CFD) Analysis and Experimental Verification (CFD 해석을 이용한 Multi Inner Stage Cyclone 내부의 미세입자제거 효율 예측 및 실험적 검증)

  • Kim, Hye-Min;Kwon, Sung-An;Lee, Sang-Jun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2012.07a
    • /
    • pp.243-246
    • /
    • 2012
  • A new multi inner stage(MIS) cyclone was designed to remove the acidic gas and minute particles of harmful materials produced from electronic industry. To characterize gas flow in MIS cyclone, pressure and velocity distribution were calculated by means of computational fluid dynamics(CFD) commercial program. Also, the flow locus of particles and particle removal efficiency were analyzed by Lagrangian method. When outlet pressure condition was -1,000 Pa, the efficiency was the best in this study. Based on the CFD simulation result, the pressure loss and destruction removal efficiency was measured through MIS cyclone experiment.

  • PDF

CFD Analytical Analysis of Jetting Characteristics in Aerosol Jet Printing Process Using Particle Tracking Technique (입자 추적 기법을 활용한 에어로졸 제트 프린팅 공정의 분사 특성에 대한 CFD 해석적 분석)

  • Sang-Min Chung;Seungwoon Park;Euikeun Choi;Soobin Oh;Chul-Hee Lee
    • Journal of Drive and Control
    • /
    • v.21 no.1
    • /
    • pp.8-15
    • /
    • 2024
  • This thesis investigates the jetting characteristics of an aerosol jet printing (AJP) process as a function of design and operating conditions. The governing equations of the AJP system are derived for experimentation and analysis. To understand the characteristics of the AJP system, it analyzes the jetting characteristics as a function of the flow rate of the carrier gas and the sheath gas, and the variation of the linewidth with the nozzle exit size based on particle tracking. The thesis focuses on computational fluid dynamics (CFD), which is a computer simulation. The particle tracking results obtained by CFD were analyzed using MATLAB. CFD analytical models can be analyzed in environments with different conditions and consider more specific situations than mathematical computational models. The validity of the CFD analysis is shown by comparing the experimental results with the CFD analysis.

CFD Analytical Analysis of Jetting Characteristics in Aerosol Jet Printing Process Using Particle Tracking Technique (입자 추적 기법을 활용한 에어로졸 제트 프린팅 공정의 분사 특성에 대한 CFD 해석적 분석)

  • Sang-Min Chung;Seungwoon Park;Euikeun Choi;Soobin Oh;Chul-Hee Lee
    • Journal of Drive and Control
    • /
    • v.21 no.2
    • /
    • pp.8-14
    • /
    • 2024
  • This paper investigates the jetting characteristics of an aerosol jet printing (AJP) process as a function of design and operating conditions. The governing equations of the AJP system are derived for experimentation and analysis. To understand the characteristics of the AJP system, this thesis analyzes the jetting characteristics as a function of the flow rate of the carrier gas and the sheath gas, and the variation of the linewidth with the nozzle exit size based on particle tracking. This thesis focuses on computational fluid dynamics (CFD), which is a computer simulation. The particle tracking results obtained by CFD were analyzed using MATLAB. CFD analytical models can be analyzed in environments with different conditions and consider more specific situations than mathematical computational models. The validity of the CFD analysis is shown by comparing the experimental results with the CFD analysis.

Diffusion Range and Pool Formation in the Leakage of Liquid Hydrogen Storage Tank Using CFD Tools

  • Kim, Soohyeon;Lee, Minkyung;Kim, Junghwan;Lee, Jaehun
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.653-660
    • /
    • 2022
  • In liquid hydrogen storage tanks, tank damage or leakage in the surrounding pipes possess a major risk. Since these tanks store huge amounts of the fluid among all the liquid hydrogen process facilities, there is a high risk of leakage-related accidents. Therefore, in this study, we conducted a risk assessment of liquid hydrogen leakage for a grid-type liquid hydrogen storage tank (lattice-type pressure vessel (LPV): 18 m3) that overcame the low space efficiency of the existing pressure vessel shape. Through a commercially developed three-dimensional computational fluid dynamics program, the geometry of the site, where the liquid hydrogen storage tank will be installed, was obtained and simulations of the leakage scenarios for each situation were performed. From the computational flow analysis results, the pool formation behavior in the event of liquid hydrogen leakage was identified, and the resulting damage range was predicted.

Simulation-Based Prediction of Steady Turning Ability of a Symmetrical Underwater Vehicle Considering Interactions Between Yaw Rate and Drift/Rudder Angle

  • Park, Jeong-Hoon;Shin, Myung-Sub;Jeon, Yun-Ho;Kim, Yeon-Gyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.99-112
    • /
    • 2021
  • The prediction of maneuverability is very important in the design process of an underwater vehicle. In this study, we predicted the steady turning ability of a symmetrical underwater vehicle while considering interactions between the yaw rate and drift/rudder angle through a simulation-based methodology. First, the hydrodynamic force and moment, including coupled derivatives, were obtained by computational fluid dynamics (CFD) simulations. The feasibility of CFD results were verified by comparing static drift/rudder simulations to vertical planar motion mechanism (VPMM) tests. Turning motion simulations were then performed by solving 2-degree-of-freedom (DOF) equations with CFD data. The turning radius, drift angle, advance, and tactical diameter were calculated. The results show good agreement with sea trial data and the effects on the turning characteristics of coupled interaction terms, especially between the yaw rate and drift angle.

A general approach for studying the motion of a cantilever beam interacting with a 2D fluid flow

  • Baudille, Riccardo;Biancolini, Marco Evangelos
    • Interaction and multiscale mechanics
    • /
    • v.1 no.4
    • /
    • pp.449-465
    • /
    • 2008
  • In this paper a general approach for studying the motion of a cantilever beam interacting with a 2D fluid flow is presented. The fluid is solved by a general purpose commercial computational fluid dynamics (CFD) package (FLUENT 6.2), while the structure is managed by means of a dedicated finite element method solver, coded in FLUENT as a user-defined function (UDF). A weak fluid structure interaction coupling scheme is adopted exchanging information at the end of each time step. An arbitrary cantilever beam can be introduced in the CFD mesh with its wetted boundaries specified; the cantilever can also interact with specified rigid and flexible walls through use of a non-linear contact algorithm. After a brief review of relevant scientific contributions, some test cases and application examples are presented.

A Study on the Evaluation for the Application of a Comn CFD Code to Flow Analysis of a HAWTs (수평축 풍력발전용 터빈의 유동 해석을 위한 상용 CFD 코드의 적용성 평가에 관한 연구)

  • Kim, B. S.;Kim, J. H.;Nam, C. D.;Lee, Y. H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.396-401
    • /
    • 2002
  • The purpose of this 3-D numerical simulation is evaluate the application of a commercial CFD code to predict 3-D flow characteristics of wind turbine. The experimental approach, which has been main method of investigation, appears to be its limits, the cost increasing disproportionally with the size of the wind turbines, and is hence mostly limited to observing the phenomena. Hence, the use of Computational Fluid Dynamics (CFD) techniques and Wavier-Stokes solvers are considered a very serious contender. The flow solver CFX-TASCflow is employed in all computations presented in this paper. The 3-D flow separation and the wake distribution of 2 bladed Horizontal Axis Wind Turbines (HAWTs) are compared to Heuristic model and visualized result by NREL(National Renewable Energy Laboratory). Simulated 3-D flow separation structure on the rotor blade is very similar to Heuristic model and the wake structure of the wind turbine is good agree with visualized results.

  • PDF