본 연구는 데이터품질과 관련된 선행연구의 메타정보를 활용하여 연구경향을 분석하고 이를 통해서 산업계의 흐름을 예측하기 위한 목적의 연구이다. 다양한 분야에서 연구경향을 분석하려는 시도는 이어져 왔으나, 데이터품질 영역은 그 범위가 방대하여 선행 연구자료에 대한 분석을 수행하기 어려웠다. 본 연구는 Web of Science 색인DB에 수록된 최근 10년간의 연구 메타데이터를 수집하여 텍스트 마이닝, 사회연결망 분석기법을 활용한 시계열 네트워크 분석을 수행하였다. 연구주제 분석 결과, 수학 및 전산 생물학, 화학, 건강관리 과학 및 서비스, 생화학 및 분자 생물학, 운영 연구 및 경영 과학, 의료정보학은 연구비율이 감소하고 있었고, 환경, 수자원, 지질학, 계측기 및 계측의 연구비율은 증가하고 있었다. 또한 사회연결망 분석 결과 데이터품질 연구에서는 분석, 알고리즘, 네트워크의 주제가 중앙성이 높은 중요한 주제로 나타났으며, 이미지와 모델, 센서, 최적화가 데이터품질에서 중요한 주제로 등장하는 추세를 보였다. 데이터품질의 산업과 연관관계 분석 결과는 기술, 산업, 건강, 유틸리티, 고객서비스가 연관성이 높은 산업으로 나타났다. 본 연구의 결과는 데이터품질 연구의 패턴을 분석하고 산업과 연관관계를 찾는 데이터품질 관련 연구자 뿐아니라 산업계에도 유용한 자료로 활용되리라 판단된다.
다양한 분야에서 시그널(signal) 형태로 자료들이 표현된다. 예를 들면 심전도(electrocardiogram)는 심근에서 발생하는 활동 전류를 나타내는데, 심장의 박동에 따라 수축과 이완을 반복하는 과정을 시간에 따른 활동 전류량의 변동으로 나타낸다. 현실세계에서 측정하거나 관찰되는 시그널에는 다양한 형태의 시그널들이 혼합되어 있는 경우가 흔하다. 예를 들어 오케스트라 연주의 아름다운 선율은 고유한 주파수(frequency)를 지닌 악기들의 다양한 소리로 구성되어 있으며, 각기 다른 음조(note)가 하나로 모여 완벽한 하모니를 형성하게 된다. 시그널이 정상인(stationary) 경우에 혼합된 시그널들을 분해하여 분석하는 방법에 대해 현재까지 다양하게 연구되어 왔다. 자료가 비정상(non-stationary)일 경우에는 기존의 방법론들을 적용시키기에는 한계가 있다. 비정상성 자료를 다루기 위해 Huang 등 (1998)은 경험적 모드분해법(empirical mode decomposition)이라는 방법을 제안하였다. 자료에 내포되어 있는 국소적인 파동(oscillation)을 국소 극값들(local extrema)을 식별하여 자료 적응적으로 추출한다. 경험적 모드분해법은 잡음(error)에 의해 자료가 오염되어 있는 경우에는 국소 극값들을 통하여 국소적인 파동을 추정하기 어려우며, 자료의 크기가 커짐에 따라 계산량도 크게 늘어나는 단점 등이 있다. 본 연구에서는 이차 미분을 이용하여 국소적인 파동을 식별하고 추정하는 새로운 방법론을 제시하고자 한다.
강화학습이란 환경에 대한 정보가 주어지지 않았을 때 현재의 상태에서 가능한 행동들을 취한 후 얻어지는 보상값이 가장 큰 행동을 최적의 행동 전략으로 학습하는 것이다. 강화학습에서 가장 많이 사용하는 Q-학습은 환경의 특정 상태에서 가능한 행동 중에 하나를 선택해서 취한 행동으로 얻어지는 보상값으로 구성되는데 실세계 상태를 이산값으로 표현하기에는 많은 어려움이 있다. 상태를 많이 정의하면 그만큼 학습에 필요한 시간이 많아지게 되고 반대로 상태 공간을 줄이면 다양한 환경상태를 한 개의 환경상태로 인지를 하고 그 환경에 맞는 한 가지의 행동만 취하도록 학습하기 때문에 행동이 단순해진다. 본 논문에서는 학습 시간을 단축하기 위해 상태 공간을 줄이는 데서 발생하는 행동의 단순화의 단점을 보완하기 위한 방법으로 영향력 분포도를 이용한 Q-학습 방법을 제안한다. 즉, 영향력 분포도와 인접한 학습 결과를 이용해서 학습하지 못한 중간 상태에 적합한 행동을 취하게 하여 동일한 상태 개수에 대해서 학습 시간을 단축하는 것이다. 동일한 학습 시간 동안에 일반적인 강화학습 방법으로 학습한 에이전트와 영향력 분포도와 강화학습을 이용해서 학습한 에이전트의 성능을 비교해 보았을 때 영향력 분포도와 강화학습을 이용해서 학습한 에이전트가 단지 일반적인 강화학습에 필요한 상태공간의 4.6%만 정의를 하고도 성능 면에서는 거의 비슷한 효과를 볼 수가 있음을 확인하였다. 이는 영향력 분포도와 강화학습을 이용한 학습이 일반적인 강화학습에 비해서 학습 속도가 2.77배정도 빨리 이루어지고 실제 학습해야 할 상태 공간의 개수가 적어져서 발생되는 문제를 영향력 분포도를 이용해서 보완을 하기 때문이다.
본 연구에서는 $20\%$ 천장개구부가 있는 정사각형 밀폐공간내의 순수자연대류와 자연대류 -복사가 고려된 복합열전달을 순차해석과 실험을 통하여 비교 분석하였다. 수치해석은 순수자연대류에 대하여 SIMPLE 알고리즘을 사용하였고, 복사열전달에 대해서는 S-N 구분 종좌표법을 이용하였으며 난류유동의 경계조건은 벽함수를 적용하였다. 실험은 수치해석의 결과와 비교하기 위하여 동일한 조건에 대하여 수행되었다. 그 결과 순수자연대류와 복합열전달의 유동장, 온도장의 형상은 유사한 유선함수를 보이고 있으며, 유동가시화를 통한 실험결과와 잘 일치하고 있음을 보여준다. 수치해석과 실험의 온도분포를 비교한 결과 평균 $8.5\%$의 오차를 보였다.
본 논문에서는 OFDM 기반의 통신 시스템용 FFT/IFFT 코어 생성기(FFT_Core_Gen)를 구현하였다. FFT_Core_Gen은 $N=64{\times}2^k$($0{\leq}k{\leq}7$)의 8가지 FFT/IFFT 코어의 Verilog-HDL 코드를 생성한다. 생성되는 FFT/IFFT 코어는 in-place 방식의 단일 메모리 구조를 기반으로 하며, FFT 길이에 따라 radix-4와 radix-2 DIF 알고리듬의 혼합 구조가 적용된다. 또한, 메모리 감소와 연산 정밀도 향상을 위하여 중간 결과값의 크기에 따른 조건적 스케일링이 연산 stage 단위로 적용되도록 하였으며, 내부 데이터와 격자계수는 각각 14비트를 사용한다. FFT_Core_Gen에서 생성되는 FFT/IFFT 코어의 연산 정밀도는 최소 58-dB (N=8,192)에서부터 최대 63-dB (N=64)의 SQNR을 갖는다. 생성되는 코어를 $0.35-{\mu}m$ CMOS 표준 셀로 합성한 결과 75-MHz@3.3-V의 속도로 동작 가능하여 64점 FFT 연산에 $2.55-{\mu}s$가 소요되고, 8192점 FFT 연산에 $762.7-{\mu}s$가 소요되어 OFDM 기반의 무선 랜, DMB, DVB 시스템의 요구조건을 만족한다.
단일 영상 초해상도 (Single Image Super-Resolution - SISR)기법은 카메라로 획득된 저해상도 영상에 필터 기반의 연산을 적용하여 좋은 화질의 고해상도 영상을 복원하는 과정이다. 최근에 심층 합성곱 신경망 학습의 발전에 따라 단일 영상 초해상도에 적용되는 심층 학습 기법들은 좋은 성과를 보여 주고 있다. 그 대표적인 방법으로 영상의 특징 맵 기반 웨이블릿 계수 학습을 통해 고해상도 영상을 복원하는 WaveletSRNet이 있다. 하지만 복잡한 알고리즘으로 인해 계산량이 증대되어 처리 속도가 늦고 특징 추출할 때 특징 맵을 효율적으로 활용하지 못 한다는 단점을 가지고 있다. 이를 개선하기 위해 본 논문에서는 단일 영상 초해상도 RDB-WaveletSRNet 기법을 제안한다. 제안된 기법은 잔여밀집블록(Residual Dense Block)을 사용하여 저해상도의 특징 맵을 효과적으로 추출하여 초해상도의 성능을 향상시키고 적절한 성장률을 설정하여 복잡한 계산량 문제까지 해결하였다. 또한 웨이블릿 패킷 분해를 사용하여 확대율에 맞게 웨이블릿 계수를 획득하므로 높은 확대율의 단일 영상 초해상도를 얻게 하였다. 다양한 영상에 대한 실험을 통하여, 제안하는 기법이 기존 기법보다 수행시간이 빠르며 영상 품질도 우수함을 입증하였다. 제안하는 방법은 기존 방법보다 화질은 PSNR 0.1813dB만큼 우수하며 속도는 1.17배 빠른 것을 실험을 통해 확인하였다.
CW (continuous wave) 도플러 레이다는 카메라와 달리 사생활 침해 문제를 해결할 수 있고, 비접촉 방식으로 신호를 얻을 수 있다는 장점이 있다. 따라서, 본 논문에서는 CW 도플러 레이다를 이용한 사람 행동 인식 시스템을 제안하고, 가속을 위한 하드웨어 설계 및 구현 결과를 제시한다. CW 도플러 레이다는 사람의 연속된 동작에 대한 신호를 측정한다. 이에, 동작 분류를 위한 단일 스펙트로그램을 얻기 위해 운동 동작의 횟수를 세는 기법을 제안하였다. 또한, 연산의 복잡도와 메모리 사용량을 최소화하기 위해 동작 분류에 BNN (binarized neural network)을 사용하였고, 검증 결과 94%의 정확도를 보임을 확인하였다. BNN의 복잡한 연산을 가속하기 위해 FPGA를 이용하여 BNN 가속기가 설계 및 구현되었다. 제안된 사람 행동 인식 시스템은 logic 7,673개, register 12,105개, combinational ALUT (adaptive look up table) 10,211개, block memory 18.7 Kb를 사용하여 구현되었으며, 성능 평가 결과 소프트웨어 구현 대비 연산 속도가 99.97% 향상되었다.
함정 외부 탑재 장비의 복잡한 형상에 의해서 발생하는 다중반사는 경로를 예측하기 어렵고 높은 RCS(Radar Cross Section)의 원인이 된다. 따라서 함정의 외부 탑재 장비의 최적배치 설계가 RAS(Radar Absorbing Structure) 방법으로 고려되어야 한다. 본 논문에서는 함정 외부 탑재 장비에서 발생하는 다중반사와 RCS를 최소화하기 위하여 함정 외부 탑재 장비 최적배치를 수행하였다. 외부 탑재 장비 최적배치에 사용된 알고리즘은 순차적 내림차순 방법을 이용하였다. 함정 외부 탑재 장비 최적배치를 수행하기 위하여 LCS-2 type을 해석 모델로 선정하였다. 계산 비용을 줄이기 위해서 장비의 기여도 분석 및 다중반사 경로 분석 등을 통해 최적 배치를 수행할 장비를 선정하였고 최적배치를 통해 RCS가 최소가 되는 최적배치 위치를 도출하였다. 또한 RCS 변화에 따른 레이다의 탐지거리 변화율을 이용하여 RCS 감소효과를 분석 하였다.
본 논문은 2015 개정 교육과정에 따른 초등학교 수학국정 교과용 도서 편찬의 과정과 결과를 분석하여 향후 교과용 도서 편찬을 위한 시사점을 모색하였다. 2015 개정 초등 수학 국정 교과서 편찬은 전국의 학계와 학교 현장 전문가들이 전문성을 발휘할 수 있도록 체계적인 편찬 시스템을 갖추고 운영되었다. 내용상의 개선 사항으로는 기초 계산 능력 강화를 위한 단원과 차시를 증대하고, 수학 개념과 원리 도입 방식이나 알고리즘 제시 방식 개선 및 내용 간의 내적 연결성을 강화하였다. 학생들에게 이해가 어려운 내용은 상위 학기나 상위 학년으로 이동 배치하여 학습 시기를 조정하였다. 1~2학년군에서는 학생들의 한글수준에 맞게 읽을 분량을 대폭 축소하고, 문장과 어휘 개선 및 지시문을 간결하게 수정하였다. 편집·디자인 개선 사항으로는 단원별 도입 차시의 삽화와 차시별 맥락 그림을 세밀화로 연계하여 제시하였고, 교과서에 등장하는 인물들을 전 학년군에 걸쳐 일관성있게 제시하였다. 편찬 과정에서 교과서의 문장과 어휘 수준, 교과서 분량, 수학 익힘 문제 난이도 등 이슈가 제기되었으며, 이에 따른 교과서 편찬 개선 노력과 그 결과를 조망하였다. 위와 같이 전반적인 분석을 통하여, 향후 국정 교과서 및 검정 교과서 등 편찬을 위해 학생과 교사를 위한 교과서 편찬 개선 방안과 편찬 운영 방안을 제시하였다.
본 연구에서는 패키징 인쇄를 위한 병렬 오프셋 인쇄 공정의 스케줄링 문제를 다루었다. 문제에 대해 두 부분으로 구분하여 접근하였고, 각각 할당 문제와 차량 경로 문제를 적용하여 수리적으로 모형화 하였다. 스케줄링 모형의 현장 적용성은 실험을 통해 검토하였다. 실제 데이터로 구성된 작은 규모의 문제에서는 수리모형으로도 실용적인 시간 내에 최적해를 도출할 수 있었고 이와 비교하여 메타 휴리스틱의 성능을 확인하였다. 기업이 보유한 데이터를 바탕으로 문제 규모를 확장한 실험에서는, 수리모형의 최적해와 비교하여 메타 휴리스틱이 해의 품질을 보장하면서 시간적 효율성을 확보할 수 있었다. 본 연구는 수작업 위주의 기존 방식은 주체(작업자)에 따라 스케줄링의 결과에 불확실성이 존재하는 문제에 주목하였다. 이러한 불확실성은 전체 생산 비용의 증가를 가져오기 때문에 이를 개선할 수 있도록 실용적인 시간 내에 일관된 결과를 제공하는 스케줄링 모형을 제시하였다. 제시한 모형은 단일 라인과 병렬 라인 모두에 적용되어 작업자의 경험에 의존하던 기존의 방식을 개선하는데 도움이 될 것으로 판단되며, 시간 함수의 정의를 통해 다른 요인들을 반영하는 연구로의 확장이 가능하다는 의의를 갖는다. 향후 주문의 납기, 복수의 라인에서 동일 주문 인쇄, 동일하지 않은 라인의 인쇄 용량, 조색 난이도 등을 고려하는 연구로의 확장을 통해 패키징 인쇄 분야의 스마트 생산 시스템 도입에 기여할 수 있을 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.