• Title/Summary/Keyword: computational algorithm

Search Result 4,412, Processing Time 0.025 seconds

The Numerical Study on the Flow Control of Ammonia Injection According to the Inlet NOx Distribution in the DeNOx Facilities (탈질설비 내에서 입구유동 NOx 분포에 따른 AIG유동제어의 전산해석적 연구)

  • Seo, Deok-Cheol;Kim, Min-Kyu;Chung, Hee-Taeg
    • Clean Technology
    • /
    • v.25 no.4
    • /
    • pp.324-330
    • /
    • 2019
  • The selective catalytic reduction system is a highly effective technique for the denitrification of the flue gases emitted from the industrial facilities. The distribution of mixing ratio between ammonia and nitrogen oxide at the inlet of the catalyst layers is important to the efficiency of the de-NOx process. In this study, computational analysis tools have been applied to improve the uniformity of NH3/NO molar ratio by controlling the flow rate of the ammonia injection nozzles according to the distribution pattern of the nitrogen oxide in the inlet flue gas. The root mean square of NH3/NO molar ratio was chosen as the optimization parameter while the design of experiment was used as the base of the optimization algorithm. As the inlet conditions, four (4) types of flow pattern were simulated; i.e. uniform, parabolic, upper-skewed, and random. The flow rate of the eight nozzles installed in the ammonia injection grid was adjusted to the inlet conditions. In order to solve the two-dimensional, steady, incompressible, and viscous flow fields, the commercial software ANSYS-FLUENT was used with the k-𝜖 turbulence model. The results showed that the improvement of the uniformity ranged between 9.58% and 80.0% according to the inlet flow pattern of the flue gas.

Design of a Bit-Level Super-Systolic Array (비트 수준 슈퍼 시스톨릭 어레이의 설계)

  • Lee Jae-Jin;Song Gi-Yong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.12
    • /
    • pp.45-52
    • /
    • 2005
  • A systolic array formed by interconnecting a set of identical data-processing cells in a uniform manner is a combination of an algorithm and a circuit that implements it, and is closely related conceptually to arithmetic pipeline. High-performance computation on a large array of cells has been an important feature of systolic array. To achieve even higher degree of concurrency, it is desirable to make cells of systolic array themselves systolic array as well. The structure of systolic array with its cells consisting of another systolic array is to be called super-systolic array. This paper proposes a scalable bit-level super-systolic amy which can be adopted in the VLSI design including regular interconnection and functional primitives that are typical for a systolic architecture. This architecture is focused on highly regular computational structures that avoids the need for a large number of global interconnection required in general VLSI implementation. A bit-level super-systolic FIR filter is selected as an example of bit-level super-systolic array. The derived bit-level super-systolic FIR filter has been modeled and simulated in RT level using VHDL, then synthesized using Synopsys Design Compiler based on Hynix $0.35{\mu}m$ cell library. Compared conventional word-level systolic array, the newly proposed bit-level super-systolic arrays are efficient when it comes to area and throughput.

Efficient High-Speed Intra Mode Prediction based on Statistical Probability (통계적 확률 기반의 효율적인 고속 화면 내 모드 예측 방법)

  • Lim, Woong;Nam, Jung-Hak;Jung, Kwang-Soo;Sim, Dong-Gyu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.3
    • /
    • pp.44-53
    • /
    • 2010
  • The H.264/AVC has been designed to use 9 directional intra prediction modes for removing spatial redundancy. It also employs high correlation between neighbouring block modes in sending mode information. For indication of the mode, smaller bits are assigned for higher probable modes and are compressed by predicting the mode with minimum value between two prediction modes of neighboring two blocks. In this paper, we calculated the statistical probability of prediction modes of the current block to exploit the correlation among the modes of neighboring two blocks with several test video sequences. Then, we made the probable prediction table that lists 5 most probable candidate modes for all possible combinatorial modes of upper and left blocks. By using this probability table, one of 5 higher probable candidate modes is selected based on RD-optimization to reduce computational complexity and determines the most probable mode for each cases for improving compression performance. The compression performance of the proposed algorithm is around 1.1%~1.50%, compared with JM14.2 and we achieved 18.46%~36.03% improvement in decoding speed.

Efficient Intermediate Joint Estimation using the UKF based on the Numerical Inverse Kinematics (수치적인 역운동학 기반 UKF를 이용한 효율적인 중간 관절 추정)

  • Seo, Yung-Ho;Lee, Jun-Sung;Lee, Chil-Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.6
    • /
    • pp.39-47
    • /
    • 2010
  • A research of image-based articulated pose estimation has some problems such as detection of human feature, precise pose estimation, and real-time performance. In particular, various methods are currently presented for recovering many joints of human body. We propose the novel numerical inverse kinematics improved with the UKF(unscented Kalman filter) in order to estimate the human pose in real-time. An existing numerical inverse kinematics is required many iterations for solving the optimal estimation and has some problems such as the singularity of jacobian matrix and a local minima. To solve these problems, we combine the UKF as a tool for optimal state estimation with the numerical inverse kinematics. Combining the solution of the numerical inverse kinematics with the sampling based UKF provides the stability and rapid convergence to optimal estimate. In order to estimate the human pose, we extract the interesting human body using both background subtraction and skin color detection algorithm. We localize its 3D position with the camera geometry. Next, through we use the UKF based numerical inverse kinematics, we generate the intermediate joints that are not detect from the images. Proposed method complements the defect of numerical inverse kinematics such as a computational complexity and an accuracy of estimation.

A small-area implementation of public-key cryptographic processor for 224-bit elliptic curves over prime field (224-비트 소수체 타원곡선을 지원하는 공개키 암호 프로세서의 저면적 구현)

  • Park, Byung-Gwan;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.6
    • /
    • pp.1083-1091
    • /
    • 2017
  • This paper describes a design of cryptographic processor supporting 224-bit elliptic curves over prime field defined by NIST. Scalar point multiplication that is a core arithmetic function in elliptic curve cryptography(ECC) was implemented by adopting the modified Montgomery ladder algorithm. In order to eliminate division operations that have high computational complexity, projective coordinate was used to implement point addition and point doubling operations, which uses addition, subtraction, multiplication and squaring operations over GF(p). The final result of the scalar point multiplication is converted to affine coordinate and the inverse operation is implemented using Fermat's little theorem. The ECC processor was verified by FPGA implementation using Virtex5 device. The ECC processor synthesized using a 0.18 um CMOS cell library occupies 2.7-Kbit RAM and 27,739 gate equivalents (GEs), and the estimated maximum clock frequency is 71 MHz. One scalar point multiplication takes 1,326,985 clock cycles resulting in the computation time of 18.7 msec at the maximum clock frequency.

An Analysis on Shortest Path Search Process of Gifted Student and Normal Student in Information (정보영재학생과 일반학생의 최단경로 탐색 과정 분석)

  • Kang, Sungwoong;Kim, Kapsu
    • Journal of The Korean Association of Information Education
    • /
    • v.20 no.3
    • /
    • pp.243-254
    • /
    • 2016
  • This study has produced a checker of the shortest path search problem with a total of 19 questions as a web-based computer evaluation based on the 'TRAFFIC' questions of PISA 2012. It is because the computer has been settled as an indispensable and significant instrument in the process of solving the problems of everyday life and as a media that is underlying in assessment. Therefore, information gifted students should be able to solve the problem using the computer and give clear enough commands to the computer so that it can perform the procedure. In addition, since it is the age that the computational thinking is affecting every sectors, it should give students new educational stimuli. The relationship between the rate of correct answers and the time took to solve the problem through the shortest route search process showed a significant correlation the variable that affected the problem solving as the difficulty of the question rises due to the increase of nodes and edges turned out to be the node than the edge. It was revealed that information gifted students went through algorithmic thinking in the process of solving the shortest route search problem. And It could be confirmed cognitive characteristics of the information gifted students such as 'ability streamlining' and 'information structure memory'.

Block-based Color Image Segmentation Using Y/C Bit-Plane Sum]nation Image (Y/C 비트 평면합 영상을 이용한 블록 기반 칼라 영상 분할)

  • Kwak, No-Yoon
    • Journal of Digital Contents Society
    • /
    • v.1 no.1
    • /
    • pp.53-64
    • /
    • 2000
  • This paper is related to color image segmentation scheme which makes it possible to achieve the excellent segmented results by block-based segmentation using Y/C bit-plane summation image. First, normalized chrominance summation image is obtained by normalizing the image which is summed up the absolutes of color-differential values between R, G, B images. Secondly, upper 2 bits of the luminance image and upper 6bits of and the normalized chrominance summation image are bitwise operated by the pixel to generate the Y/C bit-plane summation image. Next, the Y/C bit-plane summation image divided into predetermined block size, is classified into monotone blocks, texture blocks and edge blocks, and then each classified block is merged to the regions including one more blocks in the individual block type, and each region is selectively allocated to unique marker according to predetermined marker allocation rules. Finally, fine segmented results are obtained by applying the watershed algorithm to each pixel in the unmarked blocks. As shown in computer simulation, the main advantage of the proposed method is that it suppresses the over-segmentation in the texture regions and reduces computational load. Furthermore, it is able to apply global parameters to various images with different pixel distribution properties because they are nonsensitive for pixel distribution. Especially, the proposed method offers reasonable segmentation results in edge areas with lower contrast owing to the regional characteristics of the color components reflected in the Y/C bit-plane summation image.

  • PDF

Analysis of Mass Transport in PEMFC GDL (연료전지 가스확산층(GDL) 내의 물질거동에 대한 연구)

  • Jeong, Hee-Seok;Kim, Jeong-Ik;Lee, Seong-Ho;Lim, Cheol-Ho;Ahn, Byung-Ki;Kim, Charn-Jung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.10
    • /
    • pp.979-988
    • /
    • 2012
  • The 3D structure of GDL for fuel cells was measured using high-resolution X-ray tomography in order to study material transport in the GDL. A computational algorithm has been developed to remove noise in the 3D image and construct 3D elements representing carbon fibers of GDL, which were used for both structural and fluid analyses. Changes in the pore structure of GDL under various compression levels were calculated, and the corresponding volume meshes were generated to evaluate the anisotropic permeability of gas within GDL as a function of compression. Furthermore, the transfer of liquid water and reactant gases was simulated by using the volume of fluid (VOF) and pore-network model (PNM) techniques. In addition, the simulation results of liquid water transport in GDL were validated by analogous experiments to visualize the diffusion of fluid in porous media. Through this research, a procedure for simulating the material transport in deformed GDL has been developed; this will help in optimizing the clamping force of fuel cell stacks as well as in determining the design parameters of GDL, such as thickness and porosity.

Graph Cut-based Automatic Color Image Segmentation using Mean Shift Analysis (Mean Shift 분석을 이용한 그래프 컷 기반의 자동 칼라 영상 분할)

  • Park, An-Jin;Kim, Jung-Whan;Jung, Kee-Chul
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.11
    • /
    • pp.936-946
    • /
    • 2009
  • A graph cuts method has recently attracted a lot of attentions for image segmentation, as it can globally minimize energy functions composed of data term that reflects how each pixel fits into prior information for each class and smoothness term that penalizes discontinuities between neighboring pixels. In previous approaches to graph cuts-based automatic image segmentation, GMM(Gaussian mixture models) is generally used, and means and covariance matrixes calculated by EM algorithm were used as prior information for each cluster. However, it is practicable only for clusters with a hyper-spherical or hyper-ellipsoidal shape, as the cluster was represented based on the covariance matrix centered on the mean. For arbitrary-shaped clusters, this paper proposes graph cuts-based image segmentation using mean shift analysis. As a prior information to estimate the data term, we use the set of mean trajectories toward each mode from initial means randomly selected in $L^*u^*{\upsilon}^*$ color space. Since the mean shift procedure requires many computational times, we transform features in continuous feature space into 3D discrete grid, and use 3D kernel based on the first moment in the grid, which are needed to move the means to modes. In the experiments, we investigate the problems of mean shift-based and normalized cuts-based image segmentation methods that are recently popular methods, and the proposed method showed better performance than previous two methods and graph cuts-based automatic image segmentation using GMM on Berkeley segmentation dataset.

Matchmaker: Fuzzy Vault Scheme for Weighted Preference (매치메이커: 선호도를 고려한 퍼지 볼트 기법)

  • Purevsuren, Tuvshinkhuu;Kang, Jeonil;Nyang, DaeHun;Lee, KyungHee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.2
    • /
    • pp.301-314
    • /
    • 2016
  • Juels and Sudan's fuzzy vault scheme has been applied to various researches due to its error-tolerance property. However, the fuzzy vault scheme does not consider the difference between people's preferences, even though the authors instantiated movie lover' case in their paper. On the other hand, to make secure and high performance face authentication system, Nyang and Lee introduced a face authentication system, so-called fuzzy face vault, that has a specially designed association structure between face features and ordinary fuzzy vault in order to let each face feature have different weight. However, because of optimizing intra/inter class difference of underlying feature extraction methods, we can easily expect that the face authentication system does not successfully decrease the face authentication failure. In this paper, for ensuring the flexible use of the fuzzy vault scheme, we introduce the bucket structure, which differently implements the weighting idea of Nyang and Lee's face authentication system, and three distribution functions, which formalize the relation between user's weight of preferences and system implementation. In addition, we suggest a matchmaker scheme based on them and confirm its computational performance through the movie database.