• Title/Summary/Keyword: compressive strengths

Search Result 942, Processing Time 0.023 seconds

Mechanical strengths of self compacting concrete containing sawdust-ash and naphthalene sulfonate

  • Elinwa, Augustine U.;Mamuda, Mamuda;Ahmed, M.
    • Advances in concrete construction
    • /
    • v.2 no.4
    • /
    • pp.301-308
    • /
    • 2014
  • The present research work is on the effect of sawdust ash (SDA) on the mechanical strengths of self compacting concrete (SCC) using naphthalene sulfonate (NS) as a plasticizer. Experiments on compressive, flexural and splitting tensile strengths are conducted and the data analyzed using the Minitab 15 software. The results showed that SDA can defer the reaction of cement hydration and prolong the setting times of cement paste. This was very much pronounced on the flexural and splitting tensile strengths at 90 days of curing which are 36 % and 33 % higher than the control strengths, respectively. The study has proposed strength relations of mortar compressive strength with the flexural and splitting tensile strengths and these are, 5 and 7 times respectively. The flexural strength is 1.5 times that of the splitting tensile. Finally, linear models were developed on these relationships.

Material property evaluation of high strength concrete using conventional and nondestructive testing method (재래 및 비파괴검사를 이용한 고강도 콘크리트의 재료특성에 관한 연구)

  • 조영상
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.629-634
    • /
    • 2001
  • This study is to characterize the material property of early age high performance concrete emphasizing compressive strength using nondestructive testing methods. Three high performance concrete slabs of 600, 850 and 1100kg/$cm^{2}$ compressive strengths were prepared together with cylinders from same batches. Cylinder tests were peformed at the ages of 7, 14, 21 and 28 days after pouring. Using the impact echo method, the compression wave velocities were obtained based on different high performance concrete ages and compressive strengths. The equation to obtain the compressive strengths of high performance concrete has been developed using the obtained compression wave velocities. Using the SASW (spectral analysis of surface wave) method, the equation have also been developed to obtain the compressive strengths of high performance concrete based on the surface wave velocities.

  • PDF

Properties of Polymer-Modified Mortars Containing FPR Wastes (FRP 폐기물을 첨가한 폴리머-시멘트 모르타르의 특성)

  • 이병기;김승문;황의환;노재성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.84-92
    • /
    • 1996
  • The flexural and compressive strengths of polymer-modified mortars containing FRP wastes were investigated. The specimens of polymer-modified mortars containing FRP mortat were perpared by using styrene-butadiene rubber(SBR) latex, ethylene-vinyl acetate(EVA) emulsion and polyacrylic ester(PAE) emulsion with various FRP-sand ratios(10, 20, 30, 40, 50wt%). The compressive and flexural strengths of polymer-mokified mortars containing FRP wastes were decreased with an increase of FRP-sand ratio. But the compressive and flexural strengths of PAE polymer-modified mortar were more improved than OPC, whereas those of SBR and EVA polymer-modified mortars containing FRP wastes were decreased than OPC.

  • PDF

Average Compressive Strengths of Stiffened Plates for In-Service Vessels Under Lateral Pressure (횡압력을 받는 실선 보강판의 평균압축강도)

  • Choung, Joon-Mo;Jeon, Sang-Ik;Lee, Min-Seong;Nam, Ji-Myung;Ha, Tae-Bum
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.4
    • /
    • pp.330-335
    • /
    • 2011
  • This paper presents estimation of average compressive strengths of three types of stiffened panels under lateral pressure and axial compression based on simplified formulas from CSRs and nonlinear FEAs. FEA scenarios are prepared based on the slenderness ratios of the stiffened panels used for in-service vessels. The seven step lateral pressures by 1bar increment are imposed on FE models assuming maximum 30m water height. The number of FEAs for FB-, AB-, and TB-stiffened panels is totally 189 times. FEA results show that existence of pressure can evolves significant reduction of ultimate strengths, meanwhile CSR formulas do not take into account the lateral pressure effect. Lateral pressure acting on the stiffened panel with higher column slenderness ratio more reduces the ultimate strengths than those with smaller column slenderness ratio. A new concept of relative average compressive strain energy instead of the ultimate strength is introduced in order to rationally compare the average compressive strength through complete compressive straining regime. The differences of the ultimate strengths between CSR formulas and FEA results are relatively small for FB- and AB-stiffened panels, but larger discrepancies of relative average compressive strain energies are shown.

Monitoring the effects of silica fume, copper slag and nano-silica on the mechanical properties of polypropylene fiber-reinforced cementitious composites

  • Moosa Mazloom;Hasan Salehi;Mohammad Akbari-Jamkarani
    • Structural Monitoring and Maintenance
    • /
    • v.11 no.2
    • /
    • pp.71-86
    • /
    • 2024
  • In this study, to reduce the amount of cement consumed in the production of cementitious composites, the effects of partial replacement of cement weight with nano-silica, silica fume, and copper slag on the mechanical properties of polypropylene fiber-reinforced cementitious composites are investigated. For this purpose, the effect of replacing cement weight by each of the aforementioned materials individually and in combination is studied. A total of 34 mix designs were prepared, and their compressive, tensile, and flexural strengths were obtained for each mix. Among the mix designs with one cement replacement material, the highest strength is related to the sample containing 2.5% nano-silica. In this mix design, the compressive, tensile, and flexural strengths improve by about 33%, 13%, and 15%, respectively, compared to the control sample. In the ones with two cement replacement materials, the highest strengths are related to the mix made with 10% silica fume along with 2% nano-silica. In this mix design, compressive, tensile, and flexural strengths increase by about 42%, 18%, and 20% compared to the control sample, respectively. Furthermore, in the mixtures containing three cement substitutes, the final optimal mix design for all three strengths has 15% silica fume, 10% copper slag, and 2% nano-silica. This mix design improves the compressive, tensile, and flexural strengths by about 57%, 23%, and 26%, respectively, compared to the control sample. Finally, two relationships have been presented that can be used to predict the values of tensile and flexural strengths of cementitious composites with very good accuracy only by determining the compressive strength of the composites.

Characteristics of compressive strength of hardening used by fly ash and waste lime (다량의 폐석회와 석탄회를 이용한 경화체의 강도적 특성)

  • 고대형;이정재;박응모;문경주;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.653-658
    • /
    • 2001
  • The purpose of this study is to evaluate the compressive strength properties of hardening using the unrefined fly-ash and waste lime and to offer basic data to someone for recycling waste lime Waste limes are tested that specific gravity and pH value and observed microstructure of particle with SEM. The compressive strengths of Wast lime hardening which is mixed with regular ratio according to each admixture are measured. In the results of test, The pH of wast lime is very high by pH 12.1 and specific gravity is 2.22. Compressive strengths on hardening modified waste lime and fly ash is very effective. The vest compressive strengths is show that CaCl$_2$ existed in waste lime

  • PDF

Mechanical Characteristics of the Rift, Grain and Hardway Planes in Jurassic Granites, Korea (쥬라기 화강암류에서 발달된 1번 면, 2번 면 및 3번 면의 역학적 특성)

  • Park, Deok-Won
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.3
    • /
    • pp.273-291
    • /
    • 2020
  • The strength characteristics of the three orthogonal splitting planes, known as rift, grain and hardway planes in granite quarries, were examined. R, G and H specimens were obtained from the block samples of Jurassic granites in Geochang and Hapcheon areas. The directions of the long axes of these three specimens are perpendicular to each of the three planes. First, The chart, showing the scaling characteristics of three graphs related to the uniaxial compressive strengths of R, G and H specimens, were made. The graphs for the three specimens, along with the increase of strength, are arranged in the order of H < G < R. The angles of inclination of the graphs for the three specimens, suggesting the degree of uniformity of the texture within the specimen, were compared. The above angles for H specimens(θH, 24.0°~37.3°) are the lowest among the three specimens. Second, the scaling characteristics related to the three graphs of RG, GH and RH specimens, representing a combination of the mean compressive strengths of the two specimens, were derived. These three graphs, taking the various N-shaped forms, are arranged in the order of GH < RH < RG. Third, the correlation chart between the strength difference(Δσt) and the angle of inclination(θ) was made. The above two parameters show the correlation of the exponential function with an exponent(λ) of -0.003. In both granites, the angle of inclination(θRH) of the RH-graph is the lowest. Fourth, the six types of charts, showing the correlations among the three kinds of compressive strengths for the three specimens and the five parameters for the two sets of microcracks aligned parallel to the compressive load applied to each specimen, were made. From these charts for Geochang and Hapcheon granites, the mean value(0.877) of the correlation coefficients(R2) for total density(Lt), along with the frequency(N, 0.872) and density(ρ, 0.874), is the highest. In addition, the mean values(0.829) of correlation coefficients associated with the mean compressive strengths are more higher than the minimum(0.768) and maximum(0.804) compression strengths of three specimens. Fifth, the distributional characteristics of the Brazilian tensile strengths measured in directions parallel to the above two sets of microcracks in the three specimens from Geochang granite were derived. From the related chart, the three graphs for these tensile strengths corresponding to the R, G and H specimens show an order of H(R1+G1) < G(R2+H1) < R(R1+G1). The order of arrangement of the three graphs for the tensile strengths and that for the compressive strengths are mutually consistent. Therefore, the compressive strengths of the three specimens are proportional to the three types of tensile strengths. Sixth, the values of correlation coefficients, among the three tensile strengths corresponding to each cumulative number(N=1~10) from the above three graphs and the five parameters corresponding to each graph, were derived. The mean values of correlation coefficients for each parameter from the 10 correlation charts increase in the order of density(0.763) < total length(0.817) < frequency(0.839) < mean length(Lm, 0.901) ≤ median length(Lmed, 0.903). Seventh, the correlation charts among the compressive strengths and tensile strengths for the three specimens were made. The above correlation charts were divided into nine types based on the three kinds of compressive strengths and the five groups(A~E) of tensile strengths. From the related charts, as the tensile strength increases with the mean and maximum compressive strengths excluding the minimum compressive strength, the value of correlation coefficient increases rapidly.

Assessment of Ultimate Longitudinal Strength of a VLCC considering Kinematic Displacement Theory (기하학적 변위 이론을 적용한 VLCC 최종종강도 평가)

  • Choung, Joonmo;Nam, Ji-Myung;Tayyar, Gokhan Tansel;Yoon, Sung-Won;Lee, Kangsu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.4
    • /
    • pp.255-261
    • /
    • 2013
  • This paper presents prediction of ultimate longitudinal strength of a VLCC, "Energy Concentration" for which many benchmark studies have been carried out, based on kinematic displacement method proposed by Tayyar and Bayraktarkatal (2012). Kinematic displacement theory provides semi-analytical solution of average compressive strengths for various kinds of stiffened panels. The accuracy of average compressive strengths obtained from formulas of CSR(common structural rules) for tankers and kinematic displacement method are discussed in the fore part of this paper. Hull girder ultimate strengths using Smith method are also compared for different average compressive strengths. By comparing them with other benchmark results, it is concluded that the new method provides lower bounds, because hull girder strengths under the sagging and hogging moment conditions approach nearly lower bounds.

Tests on Durability of Concrete When Exposed to Sea Water (콘크리트의 내해수성 시험)

  • 고재군;황경구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.16 no.3
    • /
    • pp.3472-3476
    • /
    • 1974
  • This test was attempted to investigate the effects of some mix designs of concreteon the compressive strengths and corrosive rates when exposed to sea water of the West Sea. In this test, concrete mixes consisted of an ordinary concrete, a pozzolan concrete and concretes with different admixtures such as fly ash, pozzolith and vinsol resin. Compressive strengths of the concrete were measured at ages of 1-year and 2-years when exposed to both sea water and fresh water. Corrosive rate was tested at ages of 1-year and 2-years when exposed to sea water only. The results obtained from the test may be summarized as follows: (1) When all of concretes were exposed to fresh water, compressive strength of an ordinary concrete was the lowest at all mixes of concretes, and all of them showed higher strength as the exposing age is longer. It was evidance that the uses of pozsolan cement, fly ash, pozzolith and vinsol resin in mix design of concrete had an effect on increasing compressive strength and that fresh water also had an effect on curing concretes even though at a long-time age. (2) When concretes were exposed sea water, a concrete with fly ash was the highest in compressive strength and its strength was increasing as the exposing age is longer, but the other concretes were decreased at 2-year exposure. It was found that a concrete with fly ash was the most effective on compressive strength of all concrete, but the other concretes were attacked by action of the sea water. (3) The use of vinsol resin admixture was the most resistant to corrosion by sea water, while the use of pozzolith was the most serious at corrosion and the others were corroded to almost same extent. (4) The relationship between corrosions and compressive strengths of concretes was not clearly correlated yet. It was known that the corrosive rate of concretes could not affect to compressive strengths by 2-year exposure of the sea water. (5) Pozzolan concrete was the most effective in compressive strength when exposed to fresh water only, However, the use of a fly ash admixture was available for compressive strength when exposing to both fresh water and sea water. It was also noticed that the use of vinsol resin was not available for strengths of concrete but for resistance to corrosion when exposed to sea water. (6) It was found that the use of pozzolith was so defective in compressive strengths and corrosiive resistance when exposing to sea water that it was only available for fresh water.

  • PDF

Prediction of fly ash concrete compressive strengths using soft computing techniques

  • Ramachandra, Rajeshwari;Mandal, Sukomal
    • Computers and Concrete
    • /
    • v.25 no.1
    • /
    • pp.83-94
    • /
    • 2020
  • The use of fly ash in modern-day concrete technology aiming sustainable constructions is on rapid rise. Fly ash, a spinoff from coal calcined thermal power plants with pozzolanic properties is used for cement replacement in concrete. Fly ash concrete is cost effective, which modifies and improves the fresh and hardened properties of concrete and additionally addresses the disposal and storage issues of fly ash. Soft computing techniques have gained attention in the civil engineering field which addresses the drawbacks of classical experimental and computational methods of determining the concrete compressive strength with varying percentages of fly ash. In this study, models based on soft computing techniques employed for the prediction of the compressive strengths of fly ash concrete are collected from literature. They are classified in a categorical way of concrete strengths such as control concrete, high strength concrete, high performance concrete, self-compacting concrete, and other concretes pertaining to the soft computing techniques usage. The performance of models in terms of statistical measures such as mean square error, root mean square error, coefficient of correlation, etc. has shown that soft computing techniques have potential applications for predicting the fly ash concrete compressive strengths.