• Title/Summary/Keyword: compressive strength.

Search Result 7,825, Processing Time 0.034 seconds

Evaluation of impact resistance of high performance fiber reinforced cementitious composites under high-speed projectile crash (고속 비상체 충돌에 대한 고성능 섬유보강 시멘트 복합체의 방호성능 평가)

  • Moon, Jae-Heum;Park, Jung-Jun;Park, Gi-Joon;Cho, Hyun-Woo;Kim, Sung-Wook;Lee, Jang-Hwa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4950-4959
    • /
    • 2015
  • The importance of public infrastructures' protection against crash or blast loads has been emerging issue as structures are becoming bigger and population densities in downtown cities are growing up. However, there exists no sufficient study which considers the developments of protective building materials, that are essential for protective design and construction. To assess the protection performance and the applicability as protective materials of high performance fiber reinforced cementitious composites(HPFRCC), this study performed the impact tests with 40 mm gas-gun propelled projectile crash machine. From this study, it has observed that both high compressive strength of cement matrix and fiber reinforcement are beneficial for the improvement of impact resistance.

Study on the Crack Control Effect of Moist Curing Equipment in Side Wall of Building (습윤양생 장치를 이용한 아파트 측벽 균열제어에 관한 연구)

  • Kim, Dae-Geon;Lee, Dong-Woon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.2
    • /
    • pp.127-134
    • /
    • 2017
  • In this study, moist curing equipment was used in the exist gang-form system. By achieving sufficient spray curing, the quality of the concrete was improved and the cracking occurred in building's side wall was decreased. The following results could be made as the conclusion. For the compressive strength, all zones showed the similar results. Comparing with the zone without using moist curing equipment, the zone used moist curing equipment showed higher rebound hardness results. For the cracking, the zone utilized moist curing equipment showed the cracking averaged as 6.6 m and the zone without using moist curing equipment showed the cracking averaged as 10.3m. The effectof reducing cracking by utilizing moist curing equipment is about 36 %. Using moist curing equipment is considered as a good solution to reduce the cracking in the structure. Considering all the factors analysed, using moist curing equipment improved the quality of the concrete and decreased the cracking. When this equipment was used in the construction site, it is expected that the construction periodcan be shrunk and the ratio of defect caused by drying shrinkage can be decreased. In this research conditions, The 0.3mm sized moist curing equipment provided the most desirable results on concrete quality and preventing cracking.

Behaviour of micropiles in collapsible loess under tension or compression load

  • Qian, Zeng-Zhen;Lu, Xian-Long;Yang, Wen-Zhi;Cui, Qiang
    • Geomechanics and Engineering
    • /
    • v.7 no.5
    • /
    • pp.477-493
    • /
    • 2014
  • This study examines the behaviour of single micropiles subjected to axial tension or compression load in collapsible loess under in-situ moisture content and saturated condition. Five tension loading tests and five compression loading tests on single micropiles were carried out at a typical loess site of the Loess Plateau in Northwest China. A series of laboratory tests, including grain size distribution, specific gravity, moisture content, Atterberg limits, density, granular components, shear strength, and collapse index, were carried out during the micropile loading tests to determine the values of soil parameters. The loess at the test site poses a severe collapse risk upon wetting. The tension or compression load-displacement curves of the micropiles in loess, under in-situ moisture content or saturated condition, can generally be simplified into three distinct regions: an initial linear, a curvilinear transition, and a final linear region, and the bearing capacity or failure load can be interpreted by the L1-L2 method as done in other studies. Micropiles in loess should be considered as frictional pile foundations though the tip resistances are about 10%-15% of the applied loads. Both the tension and compression capacities increase linearly with the ratio of the pile length to the shaft diameter, L/d. For micropiles in loess under in-situ moisture content, the interpreted failure loads or capacities under tension are 66%-87% of those under compression. However, the prewetting of the loess can lead to the reductions of 50% in the tensile bearing capacity and 70% in the compressive bearing capacity.

An Experimental Study on the Reinforcing Effects of Mixtures of Vinyl Strip and Cement on the Sand Specimens (비닐스트립-시멘트 혼합 모래시편의 보강효과에 대한 실험연구)

  • Yu, Jeong-Min;Kim, Jong-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.10
    • /
    • pp.5-16
    • /
    • 2018
  • The ever-increasing amount of waste vinyl is causing big environmental problems. In particular, those from farming industry are sometimes left on site or even illegally reclaimed due to the lack of environmental concerns and capacity for collection, which worsens the situation. It is, therefore, believed that the recycling of waste vinyl is the most ideal solution in the viewpoint of environmental preservation. In this context, the potential of vinyl strip as a ground reinforcing material is investigated to expand the application of waste vinyl recycling. In this study, a series of uniaxial compression tests and resonant column tests were performed for sand specimens reinforced with vinyl strips and cement to investigate their reinforcing effects on static and dynamic behaviors. The changes in the uniaxial compressive strength (UCS), the shear modulus and the damping ratio according to the mixing ratio of vinyl strips and cements were analysed for sand specimens, having 40% and 60% relative densities, under various mixing conditions. As a result, both the static and dynamic reinforcing effects of vinyl strip-cement mixture were confirmed and the optimum mixing ratio was proposed.

Cohesion and Internal Friction Angle of Basalts in Jeju Island (제주도 현무암의 점착력과 내부 마찰각)

  • Yang, Soon-Bo
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.11
    • /
    • pp.33-40
    • /
    • 2015
  • Volcanic rocks in Jeju Island indicate the differences in geological and mechanical characteristics from region to region, and have vesicular structure caused by various environmental factors. In this study, triaxial compressive strength tests were conducted for intact rocks sampled in northeastern onshore and offshore, southeastern offshore and northwestern offshore of Jeju Island. The estimated cohesion and internal friction angle from the results of triaxial compression tests were compared and analyzed with absorption, a parameter representing the vesicular properties of basalts in Jeju Island. As a result, it was found that the relationship between cohesion and absorption could be classified clearly, considering two different linear relationships in bulk specific gravity and absorption. As the absorption increases, the cohesion decreases exponentially. In addition, the internal friction angle decreases almost linearly with increasing in the absorption, regardless of the relationships in bulk specific gravity and absorption.

Material and Structural Characteristics of High Performance Permanent Form Using Stainless Steel Fiber (스테인레스 강섬유를 이용한 고성능 영구거푸집의 재료 및 구조적 거동특성에 관한 연구)

  • Sim, Jong-Sung;Oh, Hong-Seob;Ju, Min-Kwan;Kim, Kil-Jung;Shin, Hyun-Yang
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.73-82
    • /
    • 2006
  • Nowadays, the general stripping work of form has brought some problems; increase of total constructing cost resulted from the man-dependent form work procedure and environmental issues by wasting the debonded form. In this study, to effectively reduce unnecessary cost and resolve the environmental problems caused by these kinds of reason, a permanent form method using stainless steel fiber was introduced then its material and structural characteristics were evaluated. In the case of material characteristic, the permanent form had a good ductile behavior in the result of flexural test of the permanent form panel and pull-out test of insert bolt which is installed in the permanent form and perfect bonding capacity with a field concrete. In the case of structural characteristic, compressive and tensile behavior of the permanent form was evaluated. It also showed a good structural behavior in the view of load-deflection relationship, crack patterns and additional strengthening effect.

A Feasibility Study on the Polymer Solidification of Evaporator Concentrated Wastes (폐액증발기 농축폐액 폴리머고화 타당성 연구)

  • Yang, Ho-Yeon;Kim, Ju-Youl
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.4
    • /
    • pp.297-308
    • /
    • 2007
  • The granulation equipment of concentrated wastes is manufactured for the polymer solidification of concentrated wastes. It uses liquid sodium silicate as a granulating agent for the granulating of dried powder containing boric acid. The granulating agent is sprayed in the form of droplet and mean size of dried granules is $2{\sim}4mm$. The new technology which has been used for the polymer solidification of spent resin in U.S. and certified by Nuclear Regulatory Commission (NRC) is successfully applied to concentrated wastes. This uses in-situ solidification process within drum without mechanical mixing. Maximum loading of waste can be achieved without increasing of waste volume. Polymer waste forms were evaluated with several test such as fire test, compressive strength test, leaching test, immersion test, irradiation test, and thermal cycling test according to standard test procedures.

  • PDF

Fundamental Properties of Cement Composites Containing Lightly Burnt MgO Powders (저온 소성한 MgO 분말을 혼입한 시멘트 복합체의 기초 물성)

  • Jang, Bong-Seok;Kwon, Yong-Gil;Choi, Seul-Woo;Lee, Kwang-Myong
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.225-233
    • /
    • 2011
  • The volume change in concrete takes place with changes in temperature and water content immediately after concrete casting. In the early age stage, the thermal and drying shrinkages can cause cracks that are very crucial to the durability of concrete. It was reported that when the cement with lightly-burnt MgO powder was used, the shrinkage of concrete can be reduced. This study investigates fundamental properties of cement composites with lightly burnt MgO powder by performing various experiments. The stability test results verified that MgO powder in cement composites does not cause any abnormal expansion. Also, the hydrate product analysis results obtained from MgO cement paste showed that MgO powder reduces the shrinkage at the longterm ages. In addition, the cement composites containing the proper amount of MgO powder could improve compressive strength. Finally, the shrinkage reduction from using MgO powder can be optimized by increasing MgO replacement level and curing temperature.

Flexural Behavior of Ultra High Performance Fiber Reinforced Concrete Segmental Box Girder (초고강도 섬유보강 콘크리트 분절형 박스 거더의 휨거동)

  • Guo, Qingyong;Han, Sang-Mook
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.109-116
    • /
    • 2014
  • The flexural behavior test of UHPC segmental box girder which has 160 MPa compressive strength and 15.4 m length was carried out. The effect of steel fibers in combination with reinforcing bars on improving the ductile performance of UHPC box girder was evaluated by comparing the flexural behavior of the UHPC segmental box girders made by the two kinds of mixing portion. The test variables are volume fraction of steel fibers and the arrangement of reinforcing bars. The behavior of UHPC box girder BF2 composed of 1% volume fraction of steel fibers and longitudinal reinforcing bars in web and upper flange with stirrup showed the similar ductile behavior with the girder BF1 composed of 2% volume fraction without stirrup in elastic stress region. But BF1 had the better stiffness and showed the more ductile behavior in inelastic stress region. Segmental interfaces of UHPC box girder have not any crack and slide until the final flexural collapse load.

A Study on the Design Specification for Characteristics of Grout Materials - Focus on LW method and MSG method - (국내 그라우팅 재료별 특성에 따른 설계사양에 관한 연구 - LW 공법 및 MSG 공법을 중심으로 -)

  • Chun, Byung-Sik;Kim, Jin-Chun;Nam, Soon-Sung;Ha, Kwang-Hyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.4
    • /
    • pp.67-79
    • /
    • 2002
  • The purpose of this study is to present criteria of selection of optimum grout materials through analyzing the limitation of permeability of each materials(MSG-N, OPC), in various ground conditions by comparing presentation of strength and permeability of MSG method and LW method(or SGR method). To do that, physical and chemical characteristics of grout materials were analyzed and compressive tests of homogel, mixed coagulation materials and hardening materials in certain mixing ratio, and of milk paste. In addition, permeability tests for each ground soil, each injection pressure, and each materials in combined stratum were performed with massive chamber. The results of tests showed that ultra fine grout materials like grout of MSG is necessary to construct effective grouting in sand and silty sand ground. Also, it is expected to become chemical grouting guide data to layout construction engineers because presented proper injection pressure by kind of object ground in case using ultra-fine grout material.

  • PDF