• Title/Summary/Keyword: compressive strength.

Search Result 7,825, Processing Time 0.037 seconds

Analytical and Numerical Study on Mechanical Behavior of Unit Cell of Pyramidal Truss Core Structures (피라미드 트러스 코어 단위셀의 기계적 특성에 관한 해석적 및 수치적 연구)

  • Kim, Sang-Woo;Lee, Young-Seon;Kang, Beom-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.5
    • /
    • pp.623-631
    • /
    • 2011
  • Metallic sandwich panels based on a truss core structure have been developed for a wide range of potential applications with their lightweight and multi-functionality. Structural performance of sandwich panels can be predicted from the studies on mechanical behavior of a unit cell of truss core structures. Analytical investigations on the unit cell provide approximated guidelines for the design of overall core structures for a specific application in short time. In this study, the effects of geometrical parameters on mechanical behavior of a pyramidal shape of unit cell were investigated with analytical models. The unit cell with truss member angle of 45 degree was considered as reference model and other models were designed to have the same weight and projected area but different truss member angle. All truss members were assumed to be connected with pin joint in analytical models. Under the assumptions, the equivalent strength and stiffness of the unit cell under compressive and shear loads were predicted and compared. And finally, the optimum core member angle to have maximum mechanical property could be calculated and verified with FE analysis results.

A study on the Properties for Structural Behavior of High-Performance Concrete Filled Square Steel Tube Columns -The Behavior Properties by Loading Conditions- (고성능 콘크리트를 충전한 각형강관 기둥의 구조적 거동 특성에 관한 연구 -재하조건별 거동특성-)

  • Park, Jung Min;Lee, Sung Jo;Kim, Wha Jung
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.2 s.35
    • /
    • pp.177-186
    • /
    • 1998
  • The concrete filled steel tubular column have to superior in compressive load carrying capacity, compared with same section typed hollow steel tube column, and have many excellent structural properties, such as stiffness improvement by filled concrete, improvement of ductility by reinforced effect of local buckling, and the like. However, it has not clear the effect of interaction between steel tube and filled concrete, stress portion ratio and fracture mechanism of concrete. This study investigated to structural properties for high strength concrete filled steel tube column by loading conditions through a series of experiments. Especially, this study investigated the properties of structural behaviors for concrete filled steel tube column stress ratio by loading conditions and failure mechanism of filled concrete.

  • PDF

Utilization of Wood Flour for Drying Energy Saving of Old Corrugated Container (골판지 원지의 건조효율 증대를 위한 목분의 이용)

  • Seo, Yung Bum;Jung, Jae Gwon;Lee, Young Ho;Sung, Yong Ju
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.6
    • /
    • pp.8-15
    • /
    • 2014
  • The increase of wet web solid content in wet pressing will save drying energy greatly. We applied wood flours as spacers to increase the old corrugated container (OCC) solid contents in wet pressing. The mixed furnish of OCC and wood flours of 3-5% (wt/wt) increased bulk and drainage rate, and by increasing wet pressing pressure, its solid content started to be higher than 100% OCC furnish at more than 50% solid content level. Addition of cationic starch and drainage aid to the mixed furnish increased solid content further up to around 2%. Cationic starch addition compensated or exceeded the loss of tensile and compressive strength caused by the addition of wood flour, but drainage aid did not. Cationic starch also improved the stretch of the OCC, which could mitigate cracking at folding in boxboard.

2-Dimensional Floor Impact Vibration Analysis in Bare Reinforced Concrete Slab Using Finite Element Method (유한 요소법을 이용한 나 슬래브의 2차원 바닥 충격진동 해석)

  • Seo, Sang-Ho;Jeon, Jin-Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.5 s.98
    • /
    • pp.604-611
    • /
    • 2005
  • The relationship between floor impact sound and vibration has been studied by field measurements, and the vibration modal characteristics have been analyzed. Vibration levels impacted by a standard heavy-weight impact source have been predicted according to the main design parameters using finite element method. Experimental results show that the dominant frequencies of the heavy impact sounds range below 100 Hz and that they are coincident with natural frequencies of the concrete slab. In addition, simple 2-dimensional finite element models are proposed to substitute 2 types of 3-dimensional models of complicated floor structural slabs those by The analytical result shows that the natural frequencies from first to fifth mode well correspond to those by experiments with an error of less than $12\%$, and acceleration peak value iscoincident with an error of less than $2\%$. Using the finite element model. vibration levels areestimated according to the design Parameters, slab thickness, compressive strength, and as a result, the thickness is revealed as effective to increase natural frequencies by $20\~30\%$ and to reduce the vibration level by 3$\~$4 dB per 30 mm of extra thickness.

Evaluation on the Stability of Solidified Waste Forms (방사성고화체의 물리화학적 안정성 평가)

  • 유영걸;김기홍;홍권표;정의영;고덕준
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.60-70
    • /
    • 2003
  • The stability of various waste forms to meet waste acceptance criteria was evaluated by using standard test methods of U.S.A and France. Compressive strength of waste forms were above 176.03 kgf/$\textrm{cm}^2$(cement), 15 kgf/$\textrm{cm}^2$(paraffin). In the thermal cycling test, there were no any change in their feature and volume, the loss of weight was 6.15% on the average. In the immersion test for 120 days, the loss of weight of paraffin waste form was 8.85-5.14% pH=3.83. The G-Value of $H_2$ and $CH_4$ in paraffin wax at $10^8rads$ rads of exposure dose were 2.65, 0.016.

  • PDF

A Study on the Accelerated Carbonation of the Concrete Using Sea Sand for Fine Aggregate (해사를 잔골재를 사용한 콘크리트의 촉진중성화에 관한 연구)

  • Shin, Sang-Tae;Yoo, Taek-Dong;Choi, Ki-Bong;Seo, Chee-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.4
    • /
    • pp.163-171
    • /
    • 1999
  • In this study, we executed fundamental experiment to investigate properties of accelerated carbonation with changing chloride content of concrete used sea sand in order to examine durability. So we obtained the results of following properties of mechanics, durability, concrete with sea sand, determined concrete w/C 30%, 40%, 50%, and fine aggregate 40% and changing containing chloride 0, 0.3, 0.6, $0.9kg/m^3$ by the experiment of accelerated neutralization. The results of this study as follows: 1) As result of changing chloride content of concrete used sea sand augmented in stages $0.3kg/m^3$, accelerated carbonation was increased as increment chloride content. The increment depth was decreased as it went long term age. It was shown the chloride content effected increment of carbonation depth in concrete 2) As a result of changing W/C of concrete used sea sand augmented in stages 10% at a time from 30% to 50%, accelerated carbonation depth of concrete was increased as W/C ratio. 3) As the carbonation concrete used sea sand, compressive strength between 8 weeks and accelerated carbonation depth of 1 weeks, 2 weeks, 4 weeks, 8 weeks was inversion proportion.

  • PDF

A Study on Weight-reduction Design of a Hybrid Bodyshell Made by Substituting Underframe Material in a Box-type Carbody (Box형 차체의 하부구조를 소재대체 한 하이브리드형 차체의 경량화 설계 연구)

  • Cho, Jeong-Gil;Koo, Jeong-Seo;Jung, Hyun-Seung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.100-112
    • /
    • 2011
  • This paper studied on a theoretical approach to predict structural performances and weight -reduction rates of hybrid bodyshells in case that the material of underframe structure is substituted. To choose other light-weight materials to be substituted for the original underframe material, compressive, bending and twisting deformations are considered under constant stiffness and strength conditions, which derive some new weight-reduction indices from a structural performance point of view. Next, these weight-reduction indices were verified using the finite element analyses of some simplified examples. It is shown that the derived indices to estimate the weight-reduction can be utilized as a good criterion for material substitution of the underframe at a basic design stage.

An Experimental Study on the Durability Performance for Ternary Blended Concrete Containing Both Fly Ash and Granulated Blast Furnace Slag (플라이 애시와 고로슬래그 미분말을 복합 활용한 3성분계 혼합 콘크리트의 내구성능에 대한 실험적 연구)

  • Lee, Chang-Soo;Yoon, In-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.1
    • /
    • pp.139-145
    • /
    • 2003
  • Ternary blended concrete, which contains both fly ash and granulated blast furnace slag, has an initial cost effective and is environment friendly. Furthermore, it has a lot of technical advantages such as the improvement of long term compressive strength, high workability, and the reduction of hydration heat. However, as the use and study on the performance of ternary blended concrete is limited, it is worthwhile studying the actual performance of this technology. This study examined the durability performance of ternary blended concrete, compared to binary blended concrete and ordinary portland concrete. It led to the conclusion that ternary blended concrete is very suitable for submerged members under marine environment. However, it should be noticed that ternary blended concrete becomes weak on carbonation, when it is situated on combined deterioration environment of carbonation and chloride. Therefore, the curing duration of ternary blended concrete should be prolonged in order to enhance the resistance of carbonation.

Evaluation on the Performance of Silica Fume Blended Cement Matrix Exposed to External Sulfate Attack (황산염침식을 받은 실리카 퓸 혼합 시멘트 경화체의 성능 평가)

  • Lee, Seung-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.4
    • /
    • pp.121-128
    • /
    • 2007
  • The present study evaluates the resistance to sulfate attack of cement matrix with or without silica fume. The main variable was the replacement levels of silica fume. In order to introduce sulfate attack to cement matrix, mortars and pastes was exposed to sodium sulfate solution for 510 days. Visual examination, expansion and compressive strength loss of mortars in addition to characteristics of pore for the paste samples were regularly investigated. From the test results, it was clearly observed that the cement matrix with silica fume was very resistant to sulfate attack irrespective of the replacement levels of silica fume. However, the severe deterioration due to sulfate attack was found in cement matrix without silica fume.

Evaluation on compressive strength of steel-concrete composite piles using a large scaled UTM(Universal Test Machine) (대형 UTM을 이용한 강관합성 말뚝재료의 강도 특성 평가)

  • Lee, Ju-Hyung;Kwon, Hyung-Min;Park, Jae-Hyun;Kwak, Ki-Seok;Chung, Moon-Kyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.482-489
    • /
    • 2009
  • Various model piles with different sections such as reinforced concrete, steel, steel-concrete composite without rebar and steel-concrete composite with rebar were made, and vertical load test was conducted using a large scaled UTM(Universal Test Machine) to evaluate Young's modulus and ultimate load of the model piles. Based on the tests, ultimate load of steel-concrete composite pile is 31% greater than the sum of it of reinforced concrete pile and it of steel pile. This is caused that ultimate load and Young's modulus of inner concrete increase due to confining effect by outer steel casing. Variation of ultimate load is also insignificant depending on the ratio of length to diameter(L/D), therefore bucking has not an effect on change of ultimate load in case of the L/D below 10.

  • PDF