• Title/Summary/Keyword: compressive strength.

Search Result 7,825, Processing Time 0.033 seconds

Study on Utilization of Converter Slag as Concrete Admixture

  • Satou, Masaki;Tsuyuki, Naomitsu;Umemura, Yasuhiro;Harada, Hiroshi
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.514-519
    • /
    • 2001
  • Converter has been slag produced 10 million tons per year in Japan. It is a steel making by product produced in the same way as the blast-furnace slag. Though blast-furnace slag is being used effectively as a concrete admixture, the converter stag has never been used effectively because of the expansion action of contained free lime and iron oxide. This is an important environmental problem in the steel industry. Beta-2CaOSiO$_2$(beta-C$_2$S) is contained 40 percent in converter slag, therefore it is very promising as a concrete admixture. We proposed an accelerated aging processes capable of stabilizing the converter slag in a short time. The converter slag is dipped into alkali aqueous solution after heating at low temperature. It was subsequently ground to a grain size of 75 ${\mu}{\textrm}{m}$ , inner 30 percent of OPC. The properties of mortar and concrete using the blended cement were determined. As a result, it has become apparent that the expansion was reduced and long term compressive strength was increased while that at early ages was not so remarkable. The hydration exotherm rate was lower than that of the OPC.

  • PDF

Properties of reduced and quenched converter slag

  • Ko, In-Yong;Ionescu Denisa;T. R. Meadowcroft
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.542-546
    • /
    • 2001
  • Converter slag has some compositional similarities to portland cement. But it has no hydration properties due to it's quite high concentrations of FeO(20-35%), MnO(4-6.5%). So it is needed to reduce the concentrations of iron and manganese of converter slag to use as cement additives by enhancing it's hydration properties. In this study, converter slag was modified it's composition by mixing of silica, alumina and quenched BF slag and reduced in induction furnace and quenched in running water. The hydraulic properties and structures of modified and quenched converter slag are significantly changed depend on the amount and kinds of additives. The addition of alumina up to 10% and BFQ slag up to 20% by weight on converter slag was effective to enhance the hydraulic properties of modified and quenched slag. The addition of reduced and quenched converter slag up to 20% by weight in replacement of portland cement in mixing of concrete mortar were shown higher compressive strength than 100% cement concrete mortar.

  • PDF

Hydrothermal Preparation of Artificial Stone Plate from Stone Powder Sludge (수열양생법에 의한 석분 슬러지로부터 인조석판재의 제조)

  • 김치권;배광현
    • Korean Journal of Crystallography
    • /
    • v.12 no.4
    • /
    • pp.216-221
    • /
    • 2001
  • Artificial stone plates were hydrothermally prepared in order to utilize the stone powder sludge which were generated from stone quarry . Calcium hydroxide and silica were added to sludge of which main phases were quartz and alumina, and the effect of vapour pressure, reaction time and added amount on the properties of plates were investigated. The compressive strength, water absorp-tion and apparent specific gravity of the plates, which were prepared from the mixture of 70% stone sludge, 20% calcium hydroxide and 10% silica for 3 hours at the conditions of pressing pressure of 200kg/㎠ and vapour pressure of 20 kg/㎠, were 614kg/㎠, 0.48%, 1.88 respectively. It was also possible to produce various colours and appearances by adding inorganic pigments.

  • PDF

Physical Properties according to Temperature Change of the Cement-Asphalt Mortar for Precast Slab Track (프리캐스트 슬래브 궤도용 시멘트-아스팔트 유제 혼합 모르타르 충전재의 온도변화에 따른 물리적 특성)

  • Oh, Soo-Jin;Lee, Hu-Sam;Jang, Seung-Yup;Jeong, Yong;Jung, Young-Min;Yoon, Seob
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1273-1278
    • /
    • 2007
  • The cement-asphalt mortar is a mixture of cement and asphalt emulsion, and is utilized as a underpouring materials for the railway track which is used to fill under slab panel space so as to provide a stabilized track support and a tool for reduction of noise and vibration. To increase the workability of grouting, this study investigates the effect of temperature on cement-asphalt mortar by analyzing its physical and mechanical properties before/after hardening according to the temperature (10, 15, 20, 25, $30^{\circ}C$). According to the test results, it is found that as for the physical property of fresh cement-asphalt mortar the more mixture temperature become higher or lower, the more fluidity become worse. But by increasing reducing agent amount and its unit quantity, the required fluidity is met. The compressive strength as physical property of hardened cement-asphalt mortar become lower when temperature is lower but taking it by and large the physical properties of cement-asphalt mortar before/after hardening aren't so affected by temperature and well satisfy the requirement. And it has proved that rate of expansion and freezing and thawing resistance aren't affected by temperature.

  • PDF

Stress corrosion index of Kumamoto andesite estimated from two types of testing method

  • Jeong Hae-Sik;Nara Yoshitaka;Obara Yuzo;Kaneko Katsuhiko
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.221-228
    • /
    • 2003
  • The stress corrosion index of Kumamoto andesite are evaluated by two types of testing method. One is the uniaxial compression test under various water vapor pressures, and the other is the double torsion (DT) test under a constant water vapor pressure. For the uniaxial compression tests, the uniaxial compressive strength increases linearly with decreasing water vapor pressure on the double logarithmic coordinates. As the results, the stress corrosion index obtained is estimated 44. On the other hand, in the DT test, the relaxation (RLX) test and the constant displacement rate (CDR) test were conducted. For the CDR test, as the displacement rate of loading point increases, the crack velocity increases. However, the fracture toughness is constant regardless of the change in displacement rate and the average fracture toughness is evaluated $2.07MN/m^{3/2}$. For the RLX test, the crack velocity-stress intensity factor curves are smooth and linear. The stress corrosion index estimated from the curves is 37. Comparing stress corrosion indexes in the uniaxial compression test and the DT test, there is no significant difference in these values, and they are considered to be in coincident each other regardless of testing methods. Therefore, it is concluded that stress corrosion is one of material constants of rock.

  • PDF

Tunnel Blast Design in Consideration of Joint Properties (절리특성을 고려한 터널 발파 설계)

  • 김치환
    • Tunnel and Underground Space
    • /
    • v.11 no.2
    • /
    • pp.182-189
    • /
    • 2001
  • Rockmass properties have great influence on blasting performance so that it cannot be overemphasized to analyze rockmass properties and to perform blast design based on them. Up to the present, however blast design is performed either considering only uniaxial compressive strength of intact rock or using RMR classification as a blast ability classification scheme. In this paper Ashby's approach is adopted to evaluate blast index. In addition. rockmass classification for the blast design based on joint survey results and pattern design procedure are added to Ashby's original approach. With this extended approach, blastability can be classified considering joint properties and objectiveness of evaluated blast index can be confirmed. This approach is anticipated to enhance the tunnel blast design by considering joint properties and classifying the rockmass for blast design.

  • PDF

Effect of Process Parameters of P/M and Induction Heating on the Cell Morphology and Mechanical Properties of 6061 Aluminum Alloy (P/M법과 유도가열 공정변수가 6061 알루미늄 합금의 미세기공과 기계적 성질에 미치는 영향)

  • 강충길;윤성원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.222-229
    • /
    • 2003
  • The purpose of this study is to evaluate the mechanical properties of 6061 Al foams, which were fabricated by P/M and multi-step induction heating method, and to build the database, which is needed for computer aided modeling or foam components design. Aluminium foams, consisting of solid aluminium and large quantities of porosities, is widely used in automotive, aerospace, naval as well as functional applications because of its high stiffness at very low density, high impact energy absorption, heat and fire resistance, and greater thermal stability than any organic material. In this study, 6061 Al foams were fabricated for variation of fraction of porosities (%) according to porosities (%)-final heating temperature ( $T_{a3}$) curves. Mechanical properties such as compressive strength, energy absorption capacity, and efficiency were investigated to evaluate the feasibility of foams as crash energy absorbing components. Moreover, effect of the surface skin thickness on plateau stress and strain sensitivity of the 6061 Al foams with low porosities (%) were studied.d.

Structural Behavior of Newly Developed Cold-Formed Steel Sections(I) - Compressive Behavior (신형상 냉간성형 단면의 구조적 거동(I) - 압축거동)

  • Park, Myeung Kyun;Kim, Han Sik;Chung, Hyun Suk;Kwon, Yunng Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.2
    • /
    • pp.349-356
    • /
    • 2002
  • Cold-Formed C-section and Lipped C-section are commonly used as structural members of steel houses in Korea. Both are made of SGC41 steel. However, special Cold-Formed Sections with unique cross sectional shape have been developed and widely used in advanced countries. This research focused on the newly developed thin-walled Cold-Formed Sections which possess not only high strength and stiffness but also other advantages in construction. A series of compression tests was conducted to investigate the structural behavior of a compression member, including its load carrying capacity. Test results were compared with analytical study results.

A Study on the Flexural Behavior according to Filling conditions of Beams Members(A Siries) Using High Performance Concrete (고유동성 콘크리트를 이용한 보부재(A시리즈)의 충전상황별 휨거동 연구)

  • 장일영;윤영수;엄주환;송재호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.306-311
    • /
    • 1996
  • This paper persents the flexural behavior of high performance concrete beams having different concrete filling conditions. Three tests were conducted on full-scale beam specimens with design concrete compressive strength of 400 kg/$\textrm{cm}^2$. Different concrete filling conditions were intentionally made such that the first beam specimen was soundly cast to obtain the perfect concrete filling condition. Second beam specimen was cast in such a way that up to the longitudinal tensile reinforcement from the top, good concrete was filled while poor concrete was poured for the bottom part to simulate the poor workamanship, workability and unsatisfactory compaction. Third beam specimens was cast in such a way that up to the neutral axis of the beam section from the top, good concrete was filled while so did for the bottom part as the second beam specimen. The test results were analyzed in terms of load-displacement response, formation of crack, crack width, crack spacing and shift of neutral axis. An evaluation of the ductile response fo three different beam specimens was made in combination with the ultimate load accoding to the three different concrete filling conditions.

  • PDF

A Study on the Engineering Properties of Concrete Using Cement Kiln Dust (킬른더스트를 사용한 콘크리트의 공학적 특성에 관한 연구)

  • 김기정;황인성;차천수;김성수;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.267-270
    • /
    • 2003
  • This study is intended to investigate the engineering properties of concrete, in which cement and fine aggregate are replaced with cement kiln dust(CKD), such as the properties of fresh concrete and hardened concrete and hydration heat history, for effective using method of CKD, a by-product produced in the process of making cement. According to the results, as the replacing ratio of CKD increases, slump and air content of concrete decreases remarkably due to an increase of viscosity and filling of the pores. As the properties of setting, initial and final setting time are shortened with an increase of the replacing ratio of CKD, and as the replacement of CKD for fine aggregate increases, setting time is shortened more greatly. Compressive strength increases due to filling of the pores and reduction of air content in comparison with plain concrete. When the replacement ratio of CKD for cement is 10% and 15%, peak temperature of hydration heat lowers slightly, but it goes up in the case of replacement of CKD for fine aggregate. Also, when cement and fine aggregate is replaced with CKD by 2.5% and 7.5% respectively(1C3S) in the case of replacement of CKD for cement and fine aggregate, it is highest.

  • PDF