• Title/Summary/Keyword: compressive strength.

Search Result 7,825, Processing Time 0.029 seconds

Mechanical Properties of Repair Mortar Incorporated with Bio Polymer (바이오 폴리머를 이용한 구조물 보수용 모르타르의 역학적 특성 평가)

  • Lee, Sun-Mok;Hyun, Jung-hwan;Kwon, Ki-Seong;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.97-104
    • /
    • 2018
  • In recent years, more than 5,000 tons of sargassum honeri have been infested in the southern coast and the coast of Jeju Island, causing serious damage to the farms and fisheries, and environmental problems. The alginate contained in the sargassum honeri is a natural polymeric substance mainly used for medicines and foods. However, since there is no way to utilize it in large quantities, a study was carried out to utilize bio polymer obtained from sargassum honeri in producing polymer mortar for repairing deteriorated infrastructures. From the tests of setting time, it was found that the L0BP12 mixture containing 12% of bio polymer increased the setting time by 20% as compared with the L12BP0 mixture using only synthetic polymer. From the tests of water absorbtion, the LOBP12 combination decreased by 0.36% compared to Plain-URHC using ultra rapid hardening cement. This indicated that the watertightness of the mortar was increased by the incorporation of the bio polymer. In the compressive and flexural strength tests, the strength decreased as the amount of bio polymer increased. The incorporation rate of the maximum bio polymer satisfying the KS F 4042 standard was determined to be 12%. In addition, the bond strength of the mortar produced with biopolymer was higher than that of Plain-URHC specimens, and it was confirmed that incorporation of bio polymer improves bond strength of mortar.

Evaluation of Mechanical Properties of Mortar Mixed with Zeolites and Active Hwangtoh (제올라이트 및 활성 황토를 혼입한 모르타르의 역학적 특성 평가)

  • Kwon, Seung-Jun;Lim, Hee-Seob;Kim, Hyeok-Jung;Hyun, Jung-Hwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.405-412
    • /
    • 2019
  • In this study, the physical and chemical properties of mortar are evaluated by micro-analysis, taking into account the substitution rate(20%, 30%, and 40%) of zeolite with porous properties and active hwangtoh. First, the physical and chemical properties of zeolite and active hwangtoh are reviewed to confirm that the specific surface area of those is similar with ordinary portland cement, and the main chemical composition is SiO2, Al2O3, Fe2O3, etc.. So, it is thought that they have the properties of pozolan reactive materials. As the results of the strength test considering the amount of substitution based on that of cement, It is confirmed that strength decreases with the increase of the replacement amount of zeolite and active hwangtoh, and the strength of mortar with replacement rate of 20% is higher than OPC mortar. It is confirmed that the amount of porosity is increased due to chemical properties of zeolite and active hwangtoh, and in particular, the size of the pore is greater than 1㎛ in mortar mixed with active hwangtoh.

Engineering Characteristics of Blast Furnace Slag Cement Mortar Using Chlorine Bypass System-Dust as Alkali Activator (Chlorine Bypass System-Dust를 알칼리 자극제로 사용한 고로슬래그 시멘트 모르타르의 공학적 특성)

  • Han, Min-Cheol;Lee, Dong-Joo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.2
    • /
    • pp.235-244
    • /
    • 2020
  • This study conducted a series of studies to offer a novel method of using CBS-dust that produced as by-product in the manufacture of cement. Four different contents of BS and CBS-dust were adopted for test parameters of this study. Mortar with 50% of W/B was fabricated. First, in the case of the fresh mortar, the flow decreased as the CBS-dust replacement rate increased, but the binder composition ratio BS 45% and 65% showed higher fl ow than Pl ain when repl acing CBS-dust 5%. In the case of air content, overall, the tendency was proportional to the CBS-dust replacement rate, and chloride tended to exceed the reference value at all replacement rates except for the CBS-dust 0% replacement. The compressive strength of the hardened mortar shows the resul t that the strength is improved when the CBS-dust is repl aced by 5% to 10%, and the CSH gel and structure formation is confirmed by microstructure analysis through the hydration reaction when the CBS-dust is replaced. Therefore, for a given condition CBS-dust is used as a early-strength admixture in a concrete secondary product that uses a large amount of admixture without reinforcing bars it can be an effective method for enhancing the strength of concrete as an alkali activator.

Box-Wilson Experimental Design-based Optimal Design Method of High Strength Self Compacting Concrete (Box-willson 실험계획법 기반 고강도 자기충전형 콘크리트의 최적설계방법)

  • Do, Jeong-Yun;Kim, Doo-Kie
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.5
    • /
    • pp.92-103
    • /
    • 2015
  • Box-Wilson experimental design method, known as central composite design, is the design of any information-gathering exercises where variation is present. This method was devised to gather as much data as possible in spite of the low design cost. This method was employed to model the effect of mixing factors on several performances of 60 MPa high strength self compacting concrete and to numerically calculate the optimal mix proportion. The nonlinear relations between factors and responses of HSSCC were approximated in the form of second order polynomial equation. In order to characterize five performances like compressive strength, passing ability, segregation resistance, manufacturing cost and density depending on five factors like water-binder ratio, cement content, fine aggregate percentage, fly ash content and superplasticizer content, the experiments were made at the total 52 experimental points composed of 32 factorial points, 10 axial points and 10 center points. The study results showed that Box-Wilson experimental design was really effective in designing the experiments and analyzing the relation between factor and response.

Properties Evaluation and flowability of Controlled Low Strength Materials Utilizing Industrial By-Products (산업부산물을 활용한 저강도 고유동 채움재의 유동성 및 물성평가)

  • Cho, Yong-Kwang;Kim, Chun-Sik;Nam, Seong-Young;Cho, Sung-Hyun;Lee, Hyoung-Woo;Ahn, Ji-Whan
    • Journal of Energy Engineering
    • /
    • v.27 no.4
    • /
    • pp.64-69
    • /
    • 2018
  • The purpose of this study is to expand the use of coal ash and coal slag in thermal power plants. In addition, controlled low strength materials was developed to prevent mine settlement. Bottom ash and KR slag are mixed at ratio of 7:3 to expand the use of industrial by-products through carbonate reaction and inhibit the exudation of heavy metals. In order to efficiently fill the abandon mine, workability and physical properties were evaluated according to flow. As a result of elution of harmful substance experiment, it was confirmed that the carbonation reaction inhibited the elution of heavy metals. It was confirmed that the difference in water ratio was the difference in specific surface area of the controlled low strength materials. It was confirmed that the working efficiency is excellent when the flowability is 300mm compared to 260mm. compressive strength measurement result was relatively high at 260mm compared to 300mm because the number of pores due to decrease of water ratio was small.

Strength and Compaction Characteristics of Binder-Stabilized Subgrade Material in Ulsan Area - Main Binder Components : CaO and SO3 - (고화제로 안정처리 된 울산지역 노상재료의 강도 및 다짐특성 - 주 성분이 CaO와 SO3인 고화제 -)

  • Han, Sang-Hyun;Yea, Geu-Guwen;Kim, Hong-Yeon
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.105-113
    • /
    • 2018
  • In this study, the engineering properties including bearing capacity of subgrades stabilized with a binder are analyzed by laboratory and field experiments. The main components of the binder are CaO and $SO_3$. After the binder was mixed with a low plasticity clay, the passing rates were relatively decreased as the sieve mesh size increased. Not only did the soil type change to silty sand, but engineering properties, such as the plasticity index and modified California bearing ratio (CBR), were improved for the subgrade. A comparison of the compaction curves of the stabilized subgrade and field soil compacted with the same energy demonstrated an increase of approximately 6% in the maximum dry unit weight, slight decrease in optimum moisture content, and considerable increase improvement in grain size. In the modified CBR test, the effect of unit weight and strength increase of the modified soil (with a specific amount of binder) was remarkably improved. As the proportion of granulated material increased after the addition of binder, the swelling was reduced by 3.3 times or more during initial compaction and 6.5 times by final compaction. The unconfined compressive strength of the specimens was maintained at the homogeneous value with a constant design strength. The stabilized subgrade was validated by applying it in the field under the same conditions; this test demonstrated that the bearing capacity coefficients at all six sites after one day of compaction exceeded the target value and exhibited good variability.

Experimental study on the Flexural Capacity of U-shape Composite Beam (U-형 복합보의 휨 성능에 관한 실험적 연구)

  • Ha, Sang-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.143-149
    • /
    • 2019
  • In this study, a U-shape composite beam was developed to be effectively used for a steel parking lot which is 8m or lower in height. When the U-shape composite beam was applied to a steel parking lot, essential considerations were story-height and long-span. In addition, due to the mixed structural system with reinforced concrete and steel material, the U-shape composite beam needed to have a structural integrity and reliable performance over demand capacity. The main objective of this study was to investigate the performance of the structure consisting of the reinforced concrete (RC) slab and U-shape beam. A U-shape composite beam generally used at a parking lot served as a control specimen. Four specimens were tested under four-point bending. To calculate theoretical values, strain gauges were attached to rebar, steel plate, and concrete surface in the middle of the specimens. As the results, initial yielding strength of the control specimen occurred at the bottom of the U-shaped steel. After yielding, the specimen reached the maximum strength and the RC slab concrete was finally failed by concrete crush due to compressive stress. The structural performance such as flexural strength and ductility of the specimen with the increased beam depth was significantly improved in comparison with the control specimen. Furthermore, the design of the U-shape composite beam with the consideration of flexural strength and ductility was effective since the structural performance by a negative loading was relatively decreased but the ductile behavior was evidently improved.

Permanent Formwork of PLA Filament utilizing 3D Printing Technology (3D 프린팅 기술을 활용한 PLA 필라멘트 비탈형 거푸집 연구)

  • Jeong, Junhyeong;Hyun, Jihun;Jeong, Heesang;Go, Huijae;Lee, Juhee;Ahn, Joseph
    • Korean Journal of Construction Engineering and Management
    • /
    • v.22 no.1
    • /
    • pp.81-89
    • /
    • 2021
  • In recent years, the design of buildings is changing from formal to creative and freeform. Accordingly, the scale of construction technology is changing to architectural design and construction of irregular buildings. Using the FDM method, which is one of the 3D printing technologies, it is possible to manufacture various forms of irregular formwork inexpensively and quickly coMPared to the existing formwork, and it seems to be able to solve the manpower problem. Using a 3D printer, the PLA filament formwork is produced in the form of a cylinder and a rectangular cuboid, and the usability of the PLA filament formwork is confirmed by examining the compression strength test and the degree of deformation and reusability over 28 days of age. Different sizes of additional specimens are also conducted according to the size. As a result of the experiment, it was confirmed that the filament formwork itself has about 3~4MPa strength. As a result of reviewing data through existing linear studies and experiments, it is appropriate to use more than 60% infill, and it is advantageous in terms of strength. As a result of cutting and dismantling the filament formwork, the surface is very clean and there is no damage, so it can be reused.

Strength and Durability Characteristics of Low-alkali Mortar for Artificial Reefs Produced by 3D Printers (인공어초 3D 프린터 출력을 위한 저알칼리 모르타르의 강도와 내구성능)

  • Lee, Byung-Jae;Kim, Bong-Kyun;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.67-72
    • /
    • 2022
  • Concrete prevents corrosion of reinforcing bars due to its strong alkalinity. However, in the sea, strong alkali components with a pH of 12 to 13 are eluted, which adversely affects the ecological environment and growth of marine organisms. In this study, the mechanical properties and durability of the low alkali mortar were evaluated for the development of a low alkali mortar for the 3D printed artificial reefs. As a result of evaluation of strength characteristics, the α-35 mixture, which were produced with fly ash, silica fume and α-hemihydrate gypsum, satisfied the strength requirement 27 MPa in terms of compressive strength. As a result of pH measurement, it was found that mixing with alpha-type hemihydrate gypsum resulted in minimizing pH due to the the formation of calcium sulfate instead of calcium hydroxide production. As a result of the chloride ion penetration resistance test, the α-35 mixture exhibited the best performance, 3844C. As a result of measuring the length change over time, the α-35 mixture showed the shrinkage 33.5% less compared to the Plain mix.

Study on the Modification Effect of Lightweight Aggregate using Blast Furnace Slag (고로슬래그 미분말을 이용한 경량골재의 표면개질 효과에 관한 연구)

  • Kim, Ho-Jin;Park, Sun-Gyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.111-116
    • /
    • 2022
  • Recently, building structures tend to be super high-rise and large-scale with the development of concrete technology. When high-rise building is constructed of reinforced concrete structure, it has a disadvantage that its own weight increases. Light weight aggregate(LWA) was developed to compensate for these shortcomings. Manufacturing concrete using these light weight aggregates has the advantage of reducing the self weight of the reinforced concrete structure, but has a disadvantage in that the strength of the concrete is reduced. In this study, an experimental study was conducted to investigate the strength characteristics of hardened cement according to the presence or absence of surface coating of lightweight aggregates. As a result, in terms of compressive strength, the surface-coated lightweight aggregate exhibited higher strength than the uncoated lightweight aggregate. Also, it was considered that this is because the interfacial voids of the surface coated lightweight aggregate mixed cement hardened body were filled with blast furnace slag fine powder particles.