• Title/Summary/Keyword: compressive strength recovery rate

Search Result 12, Processing Time 0.025 seconds

Self-Healing Characteristics of Mortar Blocks according to the Mixing Ratio of Self-Healing Capsules (자기치유용 캡슐 혼입율에 따른 모르타르 블록의 자기치유 특성)

  • Yoon, Joo-Ho;Kim, Chae-Young;Na, Bum-Su;Lee, Jae-In;Choi, Se-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.321-322
    • /
    • 2023
  • This study compared the compressive strength and healing strength to confirm the self-healing performance of mortar incorporating Bioinspired Self-healing Capsule (BSC) into cement composites as part of a study to mitigate the problem of durability deterioration due to cracks in concrete structures. As a result of the evaluation, it was found that the healing performance decreased as the mixing ratio of the BSC capsule increased.

  • PDF

Basic Research on 3D Cultural Heritage Packaging Technology Using Thermoplastic Polyurethane Elastomers

  • Oh, Seung-Jun;Wi, Koang-Chul
    • Journal of Conservation Science
    • /
    • v.37 no.1
    • /
    • pp.55-62
    • /
    • 2021
  • This study investigated mechanical property changes by measuring compression factors, resilience, and compressive strength according to packaging pattern and filling rate to identify the applicability of cultural heritage packaging using thermoplastic polyurethane elastomers (TPU). Research results indicate that the cross-shaped 3D pattern showed the best resilience when the internal filling rate was 20%, while the octet pattern was the best when the filling rate was either 40 and 60%. The octet pattern had the best mechanical properties and stability with resistance capacities of 20.79 kgf/cm2, 40.40 kgf/cm2, and 82.23 kgf/cm2 at 38%, 39%, and 40% recovery speeds, respectively, depending on the internal filling rate (20, 40, 60%). Based on these results, basic data on the applicability, stability, and reliability of 3D cultural heritage packaging materials using TPU materials were obtained.

An Experimental Study on Crack Self-Healing and Mechanical Recovery Performance of Cement Composites Materials Using Encapsulated Expandable Inorganic Materials based Solid Healing Materials (캡슐화된 팽창성 무기재료 기반 고상 치유재 활용 시멘트 복합재료의 균열 자기치유 및 역학적 회복성능에 관한 실험적 연구)

  • Choi, Yun-Wang;Nam, Eun-Joon;Kim, Cheol-Gyu;Oh, Sung-Rok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.92-100
    • /
    • 2022
  • In this paper, to evaluate the effect of SC on the crack self-healing performance and mechanical recovery performance of cement composites, encapsulated intumescent inorganic material-based solid healing materials were prepared. SC was mixed with cement composite materials to evaluate the basic properties, permeability test, and load reload test. SC slightly improved the flow of cement composites, and the compressive strength decreased by about 10 %. Also, the flexural strength decreased by about 30 %. It was found that when SC was mixed with the cement composite material by 5 %, the crack self-healing rate of Plain was improved by about 𝜟10 %. As a result of the load reload test, it was found that the mechanical recovery rate of Plain was improved by about 𝜟20 %. In addition, as a result of analyzing the correlation between the crack self-healing rate and the mechanical recovery rate by the load reload test, it is judged that the healing area of the Plain can be increased due to SC.

Feasibility Study on CLSM for Emergency Recovery of Landfill Bottom Ash (매립장 석탄회의 긴급복구용 CLSM으로 활용 가능성)

  • Ha-Seog Kim;Ki-Suk Kim
    • Land and Housing Review
    • /
    • v.14 no.2
    • /
    • pp.137-145
    • /
    • 2023
  • In this study, the characteristics such as flowability, bleeding rate, and strength of the CLSM (Controlled Low Strength Material) according to physical properties such as particle size distribution and particulate content of the pond ash were investigated as part of the practical development of technology for CLSM using pond ash. As a result of analyzing the properties of the collected pond ash, it was found that the density and particle size distribution characteristics were different. And that the bleeding ratio did not satisfy the standard in the case of the specimen with a large amount of fly ash and a lot of addition of mixing water. As a result of the compressive strength test, the strength development of 0.5 MPa or more for four hours was found to be satisfactory for the specimens using hemihydrate gypsum with a unit binder amount of 200 or more, and the remaining gypsum showed poor strength development. Although it was determined that landfill coal ash can be used as a CLSM material, it is necessary to identify and apply the physical and chemical characteristics of coal ash buried in the ash treatment plant of each power generation company.

Studies on the Optimum Pulping Condition of Ramie and the Mechanical Properties of Ramie/Cotton Non-woven Fabric as Hygienic Uses (Ramie의 최적 펄핑 조건 및 위생용 ramie/면 부직포의 물리적 특성 연구)

  • Choi, Si-Hyuk;Kim, Hyun-Chel
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.6
    • /
    • pp.16-25
    • /
    • 2014
  • This study was investigated in optimum condition of pulping of ramie and the mechanical properties of non-woven fabric for the performance of ramie/cotton panty liner. The result of pulping condition on ramie was most suitable for type I (mixed NaOH with $Na_2CO_3$ in 30%:70%). The sample (I) was showed yield value of 68.2% and the best fibrillation and lignin removal rate. The non-woven fabrics of ramie/cotton were made in range of ramie content of 0, 15 and 30%. As ramie content increased, so were increased in air permeability, compressive strength and compression recovery rate. But surface roughness and compressional energy were decreased. Therefore, the non-woven fabrics of ramie/cotton are very suitable in hygienic goods for female panty liner. The ramie panty liner showed a little decrease in absorption and strength, as increasing the amount of ramie. But the performance of ramie panty liner was appeared beyond standard values used by usual panty liner.

Evaluation of Cryogenic Compressive Strength of Divinycell of NO 96-type LNG Insulation System (NO96타입 LNG 방열시스템 Divinycell의 극저온 압축 강도 평가)

  • Choe, Yeong-Rak;Kim, Jeong-Hyeon;Kim, Jong-Min;Park, Sungkyun;Park, Kang Hyun;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.349-355
    • /
    • 2016
  • Divinycell, which functions as both insulation and a supporting structure, is generally applied in the NO96-type liquefied natural gas (LNG) insulation system. Polymer-material-based Divinycell, which has a high strength and low weight, has been widely used in the offshore, transportation, wind power generation, and civil engineering fields. In particular, this type of material receives attention as an insulation material because its thermal conductivity can be lowered depending on the ambient temperature. However, it is difficult to obtain research results for Divinycell, even though the component materials of the NO96-type LNG cargo containment system, such as 36% nickel steel (invar steel), plywood, perlite, and glass wool, have been extensively studied and reported. In the present study, temperature and strain-rate dependent compressive tests on Divinycell were performed. Both the quantitative experimental data and elastic recovery are discussed. Finally, the mechanical characteristics of Divinycell were compared to the results of polyurethane foam insulation material.

Crack-healing and durability performance of self-healing concrete with microbial admixture (미생물 혼입 자기치유 콘크리트의 균열 치유성능 및 내구성능)

  • Chu, Inyeop;Woo, Sang-Kyun;Lee, Byung-Jae;Lee, Yun;Lee, Hyo-Sub
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.2
    • /
    • pp.295-299
    • /
    • 2021
  • Recently, interest in maintenance has been increasing due to the enlargement and aging of infra structures. Therefore, a new paradigm is required to secure and improve the durability of structures differentiated from the past. Accordingly, research on smart concrete incorporating the concept of self-healing into concrete is being actively conducted. In this study, the crack healing performance and durability performance of self-healing concrete applied with a hydrogel containing biomineral-forming microorganisms were evaluated. As a result of evaluating the dispersion of the hydrogel in concrete, it was confirmed that the hydrogel was well distributed in concrete matrix with a dispersion coefficient of 0.35 to 0.46. The crack healing performance evaluation was verified by a water permeability test, and showed a recovery rate of 95% or more at the age of 28 days, confirming the applicability of self-healing concrete. The durability performance of self-healing concrete was evaluated in terms of resistance to penetration of chloride ion and freezing and thawing. Regardless of the mixing of the hydrogel, the same level of durability performance was shown for various compressive strength level. Therefore, it was confirmed that the microbial admixture did not affect concrete durability. In the future, long-term crack healing performance and durability verification studies should be supplemented.

Mold-design Verification of Ball Housing Insert Die in Non Processing Type Multi-stage Cold Forging (다단냉간단조 비가공 타입에서 볼하우징 인서트 다이의 금형설계 검증)

  • Hwang, Won-Seok;Choi, Jong-Won;Jung, Eu-Enn;Kang, Myungchang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.8-15
    • /
    • 2021
  • Cold forging is a method in which molding is performed at room temperature. It has a high material recovery rate and dimensional precision and produces excellent surface quality, and it is mainly used for the production of bolted or housing products. The lifespan of cold forging molds is generally determined by the wear of the mold, plastic deformation of the mold, and fatigue strength. Cold forging molds are frequently damaged due to fatigue destruction rather than wear and plastic deformation in a high-temperature environment as it is molded at room temperature without preheating the raw material and mold. Based on the results analyzed through FEM, an effective mold structure design method was proposed by analyzing the changes in tensile and compressive stresses on molds according to the number of molds and reinforcement rings and comparing the product geometry and mold stress using three existing mold models.

Valorization of marble's waste as a substitute in sand concrete

  • Ouassila, Boughamsa;Houria, Hebhoube;Leila, Kherref;Mouloud, Belachia;Assia, Abdelouahed;Chaher, Rihia
    • Advances in concrete construction
    • /
    • v.9 no.2
    • /
    • pp.217-225
    • /
    • 2020
  • The recovery of waste proves a solution with two impacts: the environmental impact by the reduction of pollution and the gain of the occupied space by this waste, and the economic impact by the use of these lasts in the building and in the area of public works. The present research consists in recovering a waste marble (thrown powder exposed to the different meteorological phenomena) generated by the quarry marble of Fil-fila, located at the east side of Skikda in the north-east of Algeria, and add it, as sand in the composition of sand concrete. To carry out this research, we analyzed the evolution brought by the substitution of ordinary sand by marble waste sand, with 25%, 50%, 75% and 100% on the properties in the fresh state (density, workability and air content) and in the cured state (compressive strength, tensile strength, surface hardness and sound velocity). For durability we tested water absorption by immersion and chloride penetration. The results obtained are compared with control samples of 0% of substitution rate. In order to have a good filling of the voids in the granular skeleton; we added a quantity of limestone recycled fines from the quarries and for a good workability a super-plasticizing additive. The results showed that the partial substitution modified both the fresh and the hardened characteristics of the tested concretes, the durability parameters also improved.

A Study on the Reinforcement Effect of Low Flow Mortal Injection Method Using Field Test (현장시험을 이용한 저유동성 몰탈주입공법의 보강효과에 관한 연구)

  • Junyeong Jang;Gwangnam Lee;Daehyeon Kim
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.599-609
    • /
    • 2023
  • In the seismic retrofitting of harbor breakwaters in Korea, the recovery rate is often uncertain due to site conditions and site conditions, and problems continue to arise. Therefore, in this study, we analyzed the recovery rate and compressive strength of the improved material through drilling survey by grouting confirmation method after applying low-fluidity mortar injection method, and furthermore, we checked the elastic modulus by downhole test and tomography to confirm the reinforcement effect of soft ground after ground improvement. The experimental results showed that the average shear wave velocity of the ground increased from 229 m/s to 288 m/s in BH-1 and BH-3 boreholes to a depth of 28.0 m, and the average shear wave velocity of the ground to a depth of 30.0 m tended to increase from 224 m/s to 282 m/s in the downhole test. This is believed to be a result of the increased stiffness of the ground after reinforcement. The results of the tomographic survey showed that the Vs of the soft ground of the sample at Site 1 increased from 113 m/s to 214 m/s, and the Vs of the sample at Site 2 increased from 120 m/s to 224 m/s. This shows that the stiffness of the ground after seismic reinforcement is reinforced with hard soil, as the Vs value satisfies 180 m/s to 360 m/s in the classification of rock quality according to shear wave velocity.