• Title/Summary/Keyword: compressive strength of standard

Search Result 551, Processing Time 0.025 seconds

Field Application of the Flowing Concrete Method Considering Value Engineering(V.E) Concept (VE기법으로 유동화 공법 도입에 대한 현장 적용성 연구)

  • Shin, Hyun-Sup;Park, Yong-Kyu;Yoon, Jae-Ryung;Jeon, Chung-Keun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.11a
    • /
    • pp.21-24
    • /
    • 2006
  • This study investigates field application of flowing concrete in order to improve workability, duality and economic evaluation of concrete. Test results showed that slump of fresh concrete satisfied the target value before and after flowing concrete, and setting time indicated 3 hours difference depending on the mixture proportion of ready-mixed-concrete company. As for the hardened concrete, compressive strength of standard curing specimens, both control and flowing concrete, presented designed value at 28 days elapse. However, the specimens curing at atmosphere decreased the value, due to the lower curing temperature, but also performed the designed value at 91 days. For the evaluation of construction fee by value engineering(V.E) concept, a flowing method declined 4.89% of concrete construction fee, which is 4.9% reduction for materials and 25% reduction for labor expenses, compared with previous construction methods.

  • PDF

Evaluation on the Stability of Solidified Waste Forms (방사성고화체의 물리화학적 안정성 평가)

  • 유영걸;김기홍;홍권표;정의영;고덕준
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.60-70
    • /
    • 2003
  • The stability of various waste forms to meet waste acceptance criteria was evaluated by using standard test methods of U.S.A and France. Compressive strength of waste forms were above 176.03 kgf/$\textrm{cm}^2$(cement), 15 kgf/$\textrm{cm}^2$(paraffin). In the thermal cycling test, there were no any change in their feature and volume, the loss of weight was 6.15% on the average. In the immersion test for 120 days, the loss of weight of paraffin waste form was 8.85-5.14% pH=3.83. The G-Value of $H_2$ and $CH_4$ in paraffin wax at $10^8rads$ rads of exposure dose were 2.65, 0.016.

  • PDF

Field Application of Concrete Using Drying Shrinkage-Reducing Superplasticizer (건조수축 저감형 유동화제를 사용한 콘크리트의 현장적용)

  • Shin, Jae-Kyung;Oh, Chi-Hyun;Choi, Jin-Man;Lee, Seong-Yeun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.11a
    • /
    • pp.13-16
    • /
    • 2006
  • This study investigates filed application in Daebul Free Trade Zone of a flowing method using drying shrinkage-reducing superplasticizer(SRS) and an insulating curing method using double bubble sheets. Test showed that fresh concrete satisfied target slump and air content. A structure adding SRS significantly decreased the total bleeding capacity and accelerated the setting time. As for the crack occurrence, the structure applying the flowing method and double bubble sheets simultaneously exhibited the most favorable crack endurance, while conventional concrete showed more than 1mm size of crack in overall, and a structure applying only the flowing method partially presented micro crack. For the area proportion of crack occurrence, the structure using the double bubble sheets indicated 9.8%, while others applying flowing method was 28%, compared with 100% of conventional one. Standard curing specimens had about $3{\sim}6%$ higher compressive strength than that of specimens cured at adjacent field construction. In addition, using SRS improved about $5{\sim}7MPa$, than that of conventional concrete at 91 days elapse.

  • PDF

Insights from LDPM analysis on retaining wall failure

  • Gili Lifshitz Sherzer;Amichai Mitelman;Marina Grigorovitch
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.545-557
    • /
    • 2024
  • A real-case incident occurred where a 9-meter-high segment of a pre-fabricated concrete separation wall unexpectedly collapsed. This collapse was triggered by improperly depositing excavated soil against the wall's back, a condition for which the wall segments were not designed to withstand lateral earth pressure, leading to a flexural failure. The event's analysis, integrating technical data and observational insights, revealed that internal forces at the time of failure significantly exceeded the wall's capacity per standard design. The Lattice Discrete Particle Model (LDPM) further replicates the collapse mechanism. Our approach involved defining various parameter sets to replicate the concrete's mechanical response, consistent with the tested compressive strength. Subsequent stages included calibrating these parameters across different scales and conducting full-scale simulations. These simulations carried out with various parameter sets, were thoroughly analyzed to identify the most representative failure mechanism. We developed an equation from this analysis that quickly correlates the parameters to the wall's load-carry capacity, aligned with the simulation. Additionally, our study examined the wall's post-peak behavior, extending up to the point of collapse. This aspect of the analysis was essential for preventing failure, providing crucial time for intervention, and potentially averting a disaster. However, the reinforced concrete residual state is far from being fully understood. While it's impractical for engineers to depend on the residual state of structural elements during the design phase, comprehending this state is essential for effective response and mitigation strategies after initial failure occurs.

A Studt on the Physical and Chemical Properties of Epoxy Resin in RC Structures (RC 구조물 보수용 에폭시 레진의 물리.화학적 특성 고찰)

  • 김도겸;유영찬;이장화;박승범
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.571-578
    • /
    • 1997
  • In the repair and repair works, epoxy resins are widely used as repair materials. The successful concrete repairs and retrofit works depends on the quality of the repair and retrofit materials. Although many materials for the repairs and retrofit have been developed in many contries, information on the repair methods are somewhat limited. Futhermore, the repairs and retrofit methods are also largely dependent on those froms in other developed contries, it is necessary to initiate rather fundamental repair-related research. The purpose of this study is to investigate th physical and mechanical properties of epoxy resin which is commonly used in repairing concrte crack in RC structures. The basic physical properties such as specific gravity, gel point and shrinkage ratio as well as the mechanical properties such ad the tensile and compressive strength, elastic modulus were acquired by the standard test method (KS code). For the test results, the great deviations of physical and mechanical properties among the test materials were discovered and is, therefore, recommended that careful attentions should be give in selecting the epoxy resin by considering the characteristics of the repair materials and repair works.

  • PDF

Utilization of Charcoal as an Environmentally Friendly Building Materials (I) - Characterization of Building Materials Prepared with Charcoal - (목탄을 이용한 친환경 건축자재 이용기술(I) - 목탄으로 제조된 건축자재의 특성 평가 -)

  • Ahn, Byoung-Jun;Jo, Tae-Su;Lee, Sung-Suk;Paik, Ki-Hyon;Kim, Sun-Ik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.537-545
    • /
    • 2009
  • The objective of this study was to investigate potential usage of environmentally friendly building materials, liquid mortar and dry cement mortar mixed with charcoal, based on the test of their physical and chemical properties. From the test results of physical and chemical properties of the liquid mortar mixed with charcoal, liquid mortar containing over 20% of charcoal, the consistency viscosity and the non-volatile content met a standard requirement. Drying time was delayed with increase in charcoal contents in the liquid mortar, however they were fully cured within 60 minutes in all treated levels. Other properties were acceptable at standard requirement. From the results, it was found that the proper charcoal addition level to the liquid mortar was 25%. In the results on dry cement, it was found that samples containing 5% of charcoal showed the maximum compressive strength, whereas samples containing over 20% of charcoal did not reach the minimum requirement of KS standard. Water retention ability constantly increased as the charcoal ratio increased. The conventional dry cement mortar adsorbed 59.5% of it, in the test of adsorption rate on ammonia gas, whereas cement mortar containing 10% of charcoal showed 71.6% of ammonia gas adsorption.

A Study on the Physical Properties of Recycled Aggregates Using Concrete of Changing Waste Pottery Blain Fineness (폐도자기 분말도 변화에 따른 순환골재 사용 콘크리트의 물리적 특성에 관한 연구)

  • Ryu, Hyun-Gi;Park, Jeong-Min;Joung, Jae-Ho;Kim, Eui-Chang;Yoon, Seung-Joe
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.119-127
    • /
    • 2011
  • Objective of this study is to identify properties on strength increase of hardened concrete and fluidization of non-hardened concrete using waste ceramics generated by construction waste, which is a type of industrial waste, and by ceramics, which is a clay plastic, during its production process, and determine length change ratio caused by drying shrinkage during substitution of recycle aggregate and waste ceramics, and whether they can be used as concrete compounds. Slump of non-hardened concrete exhibited the best fluidization and formability at recycled aggregate's replacement ratio of 60% driven by higher substitution ratio of recycled aggregate and waste ceramics while air content met the KS requirement when substitution ratio of waste ceramics was $4,000cm^2/g$. Compressive strength of hardened concrete exceeded the requirements at early age and standard age and temperature dropped by roughly $6{\sim}10^{\circ}C$ less than the standard at maximum temperature in adiabatic temperature increase, which will hopefully result in stronger durability.

  • PDF

Design Considerations and Pull-Out Behavior of Mechanical Anchor of Reinforcement (철근 기계적 정착장치의 설계 고려사항과 인발특성)

  • 천성철;김대영
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.593-601
    • /
    • 2001
  • In RC structure, sufficient anchorage of reinforcement is necessary for the member to produce the full strength. Generally, conventional standard hook is used for the reinforcement's anchorage. However, the use of standard hook results in steel congestion, making fabrication and construction difficult. Mechanical anchor offers a potential solution to these problems and may also ease fabrication, construction and concrete placement. In this paper, the required characteristics and the design considerations of mechanical anchor were studied. Also, the mechanical anchor was designed according to the requirements. To investigate the pull-out behavior and properness of mechanical anchorage, pull-out tests were performed. The parameters of tests were embedment length, diameter of reinforcement, concrete compressive strength, and spacing of reinforcements. The strengths of mechanical anchor were consistent with the predictions by CCD method. The slip between mechanical anchor and concrete could be controlled under 0.2mm. Therefore, the mechanical anchor with adequate embedment could be used for reinforcement's anchorage. However, it was observed that the strength of mechanical anchors with short spacing of reinforcements was greatly reduced. To apply the mechanical anchor in practice (e.g. anchorage of the beams reinforcements in beam-column joint), other effects that affect the mechanical anchor mechanism, such as confinement effect of adjacent member from frame action or effects of shear reinforcement, should be considered.

Clip-type Binding Implement Effect on Anchorage Behavior of 90-Degree End-Hooked Transverse Reinforcement in Reinforced Concrete Columns (클립형 연결장치로 결속된 90도 갈고리를 갖는 띠철근의 정착거동)

  • Park, Kyoung-Yeon;Yun, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.4
    • /
    • pp.72-80
    • /
    • 2020
  • The purpose of this study is to secure the same or more structural performance and constructability for the details of hooks cross-constructed at 135 degrees used as external-ties standard detail in RC columns, therefore, to the purpose of improving constructability, the clip-type binding implement was suggested and A total of 28 pull-out specimens were prepared with the parameters of concrete compressive strength and clip-embeded length, clip installation location to examine the anchorage behavior of the clip-type binding implement. The experiment was carried out. The results of the experiment confirmed that the anchorage strength of the clip-type binding implement was higher than the details of hooks cross-constructed at 135-degree regardless of the diameter of tie and concrete strength, embeded clip length, clip installation. and The 90-degree end hook with clip-type binding implement was showed a similar an anchorage behavior of 135-degree end-hooked transverse reinforcement, consequently, The 90-degree end hooked with clip-type binding implement is evaluated to be the same anchorage behavior and performance as standard 135-degree end hook detail.

An Experimental Study on Tensile Properties of Steel Fiber-Reinforced Ultra High Strength Concrete (강섬유 보강 초고강도 콘크리트의 인장 특성 실험 연구)

  • Yang, In-Hwan;Park, Ji-Hun;Lee, Jae-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.279-286
    • /
    • 2019
  • In this study, an experimental study on the tensile properties of steel fiber-reinforced ultra high strength concrete(UHSC) with a standard compressive strength of 180MPa was performed. Steel fibers with a volume ratio of 1% were mixed to prepare direct tensile strength specimens and prism specimens for the three-point bending test. The fabricated specimens were set up in the middle section of the specimen to induce cracks, and the test was carried out according to each evaluation method. First, the stress-strain curves were analyzed by performing direct tensile strength tests to investigate the behavior characteristics of concrete after cracking. In addition, the load-CMOD curve was obtained through the three-point bending test, and the inverse analysis was performed to evaluate the stress-strain curve. Tensile behavior characteristics of the direct tensile test and the three-point bending test of the indirect test were similar. In addition, the tensile stress-strain curve modeling presented in the SC structural design guidelines was performed, and the comparative analysis of the measured and predicted values was performed. When the material reduction factor of 1.0 was applied, the predicted value was similar to the measured value up to the strain of 0.02, but when the material reduction factor of 0.8 was applied, the predicted value was close to the lower limit of the measured value. In addition, when the strain was greater than 0.02, the predicted value by SC structural design guideline to underestimated the measured value.