• Title/Summary/Keyword: compressive strength equation

Search Result 359, Processing Time 0.024 seconds

Design Equations of Compression Splice Strength and Length in Concrete of 100 MPa and Less Compressive Strength (100 MPa 이하 콘크리트의 철근 압축 이음 강도와 이음 길이 설계)

  • Chun, Sung-Chul;Lee, Sung-Ho;Oh, Bo-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.211-217
    • /
    • 2011
  • Although a compression splice length does not need to be longer than a tension splice length due to end bearing effect, current design codes impose a longer compression lap splice than a tension lap splice in high strength concrete. Hence, new criteria for the compression lap splice including concrete strength effect need to be found for economical design of ultra-high strength concrete. An experimental study has been conducted using column specimens with concrete strength of 80 and 100 MPa with transverse reinforcement. The test results showed that splice strengths improved when the amount of transverse reinforcement increased. However, end bearing strength did not increase when larger amount of transverse reinforcement is provided within the spliced zone. Therefore, the splice strength enhancement was attributed to the improvement of bond. From regression analysis of 94 test results including specimens made with concrete strength of 40 and 60 MPa, a new design equation is proposed for compression lap splice in the concrete compressive strength ranging from 40 to 100 MPa with transverse reinforcement. By using the proposed equation, the incorrect design equations for lap splice lengths in tension and compression can be corrected. In addition, the equation has a reliability equivalent to those of the specified strengths of materials.

Flexural behavior of concrete beams reinforced with aramid fiber reinforced polymer (AFRP) bars

  • Kim, Min Sook;Lee, Young Hak;Kim, Heecheul;Scanlon, Andrew;Lee, Junbok
    • Structural Engineering and Mechanics
    • /
    • v.38 no.4
    • /
    • pp.459-477
    • /
    • 2011
  • Due to the low elastic modulus of FRP, concrete members reinforced with FRP rebars show greater deflections than members reinforced with steel rebars. Deflection is one of the important factors to consider the serviceability of horizontal members. In this study flexural test of AFRP reinforced concrete beams was performed considering reinforcement ratio and compressive strength as parameters. The test results indicated that flexural capacity and stiffness increase in proportion to the reinforcement ratio. The test results were compared with existing proposed equations for the effective moment of inertia including ACI 440. The most of the proposed equations were found to over-estimate the effective moment of inertia while the equation proposed by Bischoff and Scanlon (2007) most accurately predicted the values obtained through actual testing.

A Study on the effect of Compressive residual stress on fatigue crack propagation behavior of the spring steel (스프링강의 피로파괴에 미치는 압축잔류응력의 영향)

  • Jin, Young-Beom;Park, Keyung-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.348-352
    • /
    • 2004
  • Recently the steel parts used for automiles and trains are required to be used under higher stress than ever before in need of the weight down. However, threr are a lot of problems with developing such of fatigue strength and fatigue life are mainly focused on by adopting residual stress. And got the following characteristics from crack growth test carried out stress ratio. Fatigue life shows more improvement in the Un-peening material. And Compressive residual stress of surface on the Shot-peening processed operate resistance force of fatigue. So we cam obtain fallowings. (1) The fatigue crack growth rate on stage II is conspicuous with the size of compressive residual stress and is dependent of Paris equation. (2) Although the maximum compressive residual stress is deeply and widely formed from surface, fatigue life does not improve than when maximum compressive residual stress is formed in surface. (3) The threshold stress intensity factor range is increased with increasing compressive residual stress.

  • PDF

Evaluation of Stress-Strain Relationship and Elastic Modulus Equation of Steel Fiber Reinforced High-Strength Concrete (강섬유보강 고강도콘크리트의 응력-변형률 곡선 및 탄성계수 추정식 평가)

  • 장동일;손영현;조광현;김광일
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.2
    • /
    • pp.13-20
    • /
    • 2000
  • In this study, the compression test of steel fiber reinforced high-strength concrete have been performed with varying strengths and volume factions of steel fiber. Three types of matrices including low strength concrete( c'=30 MPa), medium strength concrete( c'=50 MPa), and high strength concrete( c'=70 MPa) were selected. Five types of fiber fractions were studied including 0.0%, 0.5%, 0.75%, 1.0%, and 1.5% by volume. From the results of the compressive strength test, the post-peak characteristics of the stress-strain relationship were investigated, and the existing equations to predict the elastic modulus were experimentally evaluated.

Correlation between Longitudinal Wave Velocity and Strength of Early-aged Concrete (초기 재령 콘크리트의 종파 속도와 강도의 상관관계)

  • 이휘근;이광명;김동수
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.6
    • /
    • pp.67-74
    • /
    • 2000
  • The usage of nondestructive testing on early-aged concrete leads to enhacned safty and allows effective scheduling of construction, thus making it possible to maximize the time and cost efficiencies. In this study, a reliable nondestructive strength evaluation method for early-aged concrete using the longitudinal wave velocity is proposed. Compression tests were performed to examine factors influencing the velocity-strength relationship of concrete, such as water-cement (w/c) ratio, fine aggregate ratio, curing temperature, and curing condition. The test results show that a change in the w/c ratio and curing temperature has minor effect on the velocity-strength relationship/ However, curing condition significantly influences the velocity-strength relationship of early-aged concrete. Moreover, the longitudinal wave velocity increases with decreasing fine aggregate ratio. It is concluded from this study that the strength evaluation of early-age concrete can be achieved by a nonlinear equation which considers the effects of curing condition and fine aggregate ratio.

Experimental study on the strength behavior of cement-stabilized sand with recovered carbon black

  • Chhun, Kean Thai;Choo, Hyunwook;Kaothon, Panyabot;Yune, Chan-Young
    • Geomechanics and Engineering
    • /
    • v.23 no.1
    • /
    • pp.31-38
    • /
    • 2020
  • Soil-cement stabilization is a type of ground improvement method which has been used to improve the engineering properties of soil. The unconfined compression test is the commonly used method to evaluate the quality of the stabilized soil due to its simplicity, reliability, rapidity and cost-effectiveness. The main objective of this study was to evaluate the effect of recovered carbon black (rCB) on the strength characteristic of cement-stabilized sand. Various rCB contents and water to cement ratios (w/c) were examined. The unconfined compression test on stabilized sand with different curing times was also conducted for a reconstituted specimen. From the test result, it was found that the compressive strength of cement-stabilized sand increased with the increase of the rCB content up to 3% and the curing time and with the decrease of the w/c ratio, showing that the optimum rCB concentration of the tested stabilized sand was around 3%. In addition, a prediction equation was suggested in this study for cement-stabilized sand with rCB as a function of the w/c ratio and rCB concentration at 14 and 28 days of curing.

Flexural capacity estimation of FRP reinforced T-shaped concrete beams via soft computing techniques

  • Danial Rezazadeh Eidgahee;Atefeh Soleymani;Hamed Hasani;Denise-Penelope N. Kontoni;Hashem Jahangir
    • Computers and Concrete
    • /
    • v.32 no.1
    • /
    • pp.1-13
    • /
    • 2023
  • This paper discusses a framework for predicting the flexural strength of prestressed and non-prestressed FRP reinforced T-shaped concrete beams using soft computing techniques. An analysis of 83 tests performed on T-beams of varying widths has been conducted for this purpose with different widths of compressive face, beam depth, compressive strength of concrete, area of prestressed and non-prestressed FRP bars, elasticity modulus of prestressed and non-prestressed FRP bars, and the ultimate tensile strength of prestressed and non-prestressed FRP bars. By analyzing the data using two soft computing techniques, named artificial neural networks (ANN) and gene expression programming (GEP), the fundamental parameters affecting the flexural performance of prestressed and non-prestressed FRP reinforced T-shaped beams were identified. The results showed that although the proposed ANN model outperformed the GEP model with higher values of R and lower error values, the closed-form equation of the GEP model can provide a simple way to predict the effect of input parameters on flexural strength as the output. The sensitivity analysis results revealed the most influential input parameters in ANN and GEP models are respectively the beam depth and elasticity modulus of FRP bars.

The Relation between Pullout Load and Compressive Strength of Ultra-High-Strength Concrete (초고강도 콘크리트의 인발하중과 압축강도와의 관계)

  • Ko, Hune-Beom;Kim, Ki-Tae
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.1
    • /
    • pp.17-24
    • /
    • 2018
  • The pullout test, a nondestructive testing(NDT), for pre-installed inserts is perhaps the most widely used technique to estimate the in-situ compressive strength of concrete. It measures the force needed to pullout a standardized metal insert embedded into concrete members. The pullout test was certified by the American Society for Testing and Materials(ASTM) and Canadian Standards Association(CSA) as a reliable method for determining the strength of concrete in concrete structures under construction. To easily estimate the strength of ultra-high-strength concrete, a simplified pullout tester, primarily composed of a standard 12mm bolt with a groove on the shaft as a break-off bolt, an insert nut, and a hydraulic oil pump without a load cell, was proposed. Four wall and two slab specimens were tested for two levels of concrete strength, 80MPa and 100MPa, using a simplified pullout tester with a load cell to verify the advantages of the pullout test and simplified pullout test. The compressive strength of concrete, pullout load, and the rupture of the break-off bolt were measured 11 times, day 1 to 7, 14, 21, 28, and 90. The correlation of the pullout load and the compressive strength of each specimen show a higher degree of reliability. Therefore, a simplified pullout test can be used to evaluate the in-place strength of ultra-high-strength concrete in structures. The prediction equation for the groove diameter of the break-off bolt(y) with the concrete strength(x) was proposed as y=0.0184x+5.4. The results described in this research confirm the simplified pullout's utility and potential for low cost, simplicity, and convenience.

Damage constitutive model of brittle rock considering the compaction of crack

  • Gu, Qingheng;Ning, Jianguo;Tan, Yunliang;Liu, Xuesheng;Ma, Qing;Xu, Qiang
    • Geomechanics and Engineering
    • /
    • v.15 no.5
    • /
    • pp.1081-1089
    • /
    • 2018
  • The deformation and strength of brittle rocks are significantly influenced by the crack closure behavior. The relationship between the strength and deformation of rocks under uniaxial loading is the foundation for design and assessment of such scenarios. The concept of relative crack closure strain was proposed to describe the influence of the crack closure behavior on the deformation and strength of rocks. Considering the crack compaction effect, a new damage constitutive model was developed based on accumulated AE counts. First, a damage variable based on the accumulated AE counts was introduced, and the damage evolution equations for the four types of brittle rocks were then derived. Second, a compaction coefficient was proposed to describe the compaction degree and a correction factor was proposed to correct the error in the effective elastic modulus instead of the elastic modulus of the rock without new damage. Finally, the compaction coefficient and correction factor were used to modify the damage constitutive model obtained using the Lemaitre strain equivalence hypothesis. The fitted results of the models were then compared with the experimental data. The results showed that the uniaxial compressive strength and effective elastic modulus decrease with an increase in the relative crack closure strain. The values of the damage variables increase exponentially with strains. The modified damage constitutive equation can be used to more accurately describe the compressive deformation (particularly the compaction stage) of the four types of brittle rocks, with a coefficient of determination greater than 0.9.

A Study on the Calculation Method for Flexural Strength of One-way Hollow Slabs (일방향 중공슬래브의 휨강도 산정방법에 관한 연구)

  • Kim, Hyun-Su;Lim, Jun-Ho;Kang, Joo-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.6
    • /
    • pp.541-548
    • /
    • 2012
  • The hollow slab has advantages that its self-weight does not greatly increase notwithstanding the increase of its thickness and its flexural performance does not significantly degrade in comparison with general reinforced concrete slab. However, the utilization of the hollow slab is currently being underestimated in spite of structural system that enables economic design of building and construction of eco-friendly structure. the significant reasons for this situation is that the method of structural analysis and design for hollow slab is not generalized. In this study, to consider practical compressive zone of hollow slab, the equation for its flexural strength is proposed by the volume of compressive stress block according to neutral axis location in hollow section assumed. Existing estimation method of flexural strength of hollow slab considering only compressive zone above hollow part is evaluated as the most conservative method and the method estimating flexural strength by two alternative cross-section of hollow slab is evaluated as more practical method.