• 제목/요약/키워드: compression-type

검색결과 1,033건 처리시간 0.022초

농산물 포장용 골판지상자의 수송 중 진동에 의한 압축강도 변화 (Effect of Vibration during Distribution Process on Compression Strength of Corrugated Fiberboard Boxes for Agricultural Products Packaging)

  • 신준섭;김종경
    • 한국포장학회지
    • /
    • 제27권2호
    • /
    • pp.91-100
    • /
    • 2021
  • Agricultural corrugated fiberboard packaging boxes frequently experience damage due to loading and unloading, vibration during transport, and shock by dynamic distribution condition change. This study was carried out to estimate effect of vibration during distribution process on compression strength of corrugated fiberboard boxes for agricultural products. In order to identify the degradation caused by vibration, after box packaging the agricultural products(tangerine or cucumber), the natural frequencies of the packaging boxes were measured by varying the relative humidity(50, 70 and 90%) at 25℃ temperature. Various types of corrugated fiberboard boxes were packed with tangerines and cucumbers, and the PSD plot vibration tests were conducted by utilizing the actual vibration recording results of the Gyeongbu Expressway section between Seoul and Gimcheon. As a result of the experiment, the decrease in compression strength of the box was relatively low in DW-AB, and the decrease in compression strength of the SW-A 0201(RSC) type box was the highest at 20.49%. In particular, both SW-A and DW-AB showed low compression strength degradation rates for open folder type boxes. The moisture content varies depending on the type of the box or agricultural products, and the enclosed 0201(RSC) type box was generally higher than the open folder or bliss type box, which is believed to be the reason for the decrease in compression strength of RSC type box due to humidity. By the agricultural product, the percentage of decrease in compression strength of box packed with cucumbers was especially high.

와류실식 디젤기관의 배기배출물 저감을 위한 연소실의 압축비 및 분구면적비 개선 (Improving Compression and Throat Ratios of Combustion Chamber for Reduction of Exhaust Emissions for a Swirl Chamber Type Diesel Engine)

  • 이창규;허윤근;서신원
    • 농업과학연구
    • /
    • 제37권3호
    • /
    • pp.501-508
    • /
    • 2010
  • A swirl chamber type diesel engine attachable to 18 kW agricultural tractors was improved to reduce exhaust emissions. Compression ratio and throat area ratio of the combustion chamber were varied to determine optimum combustion conditions. Tests were composed of full load and 8-mode emission tests. Compression ratio was fixed as 21, but the swirl chamber volume was increased by 3.8%. Output power, torque, specific fuel consumption, exhaust gas temperature, and smoke level were not considerably different for compression ratios of 21.5 (reference condition) and 21 (test condition), while NOx, HC, CO and PM levels for the compression ratio of 21 were decreased by 11%, 46%, 28%, 11%, respectively, from those for the compression ratio of 21.5. The tests were also conducted with a compression ratio of 22 and 4.3% increased chamber volume. Output power, torque, exhaust gas temperature and smoke level were greater, while specific fuel consumption was less for the compression ratio of 22 than those for the compression ratio of 21.5. Increase of compression ratio decreased HC and CO levels by 24%, 39%, but increased NOx and PM levels by 24%, 39%. Based on these results, a compression ratio of 21 was selected as an optimum value. Then, full load tests with the selected compression ratio of 21 were carried out for different throat ratios of 1.0%, 1.1%, 1.2%. Output power and torque were greatest and smoke was lowest when throat area ratio was 1.1%, which satisfied the target values of specific fuel consumption (less than 272 g/$kW{\cdot}h$) and exhaust gas temperature (less than $550^{\circ}C$). Therefore, a throat area ratio of 1.1% was selected as an optimum value.

스타일과 브라 컵 사이즈에 따른 스포츠브라의 착용 쾌적감 분석 연구 (A Study on Comfort of Sports Bras by Style and Bra Cup Size)

  • 천종숙;장유미
    • 복식문화연구
    • /
    • 제20권4호
    • /
    • pp.549-559
    • /
    • 2012
  • The purpose of this study was to analyze the comfort of sports bras by style and bra cup size. The comfort of wear was measured with compression level. The displacement of breast points (BP) after wearing a sports bra was measured. Study subjects evaluated the comfort level of the compression type and encapsulation type sports bras after walking and running. The results showed that all types of experimental sports bras provided more coverage than everyday bras. The compression type bra placed more pressure on the breast, chest, and under-bust than the encapsulation type bra. The BP distance decreased for all types. The C cup subjects' breasts were raised after wearing the sports bras. The B cup subjects had less comfort with the compression style bra than C cup subjects. The racer back style bra with high neckline and small band girth placed more pressure than others. They were difficult to don and doff and the least comfortable. These results imply that the racer back compression style sports bra was uncomfortable for women with large breast, while the encapsulation style bra with the compressing panel at upper chest was the most comfortable. The bras that shortened BP distance placed more pressure on the breast. But the bra that raised and shorted the distance of BP provided better comfort for large-breasted subjects.

흡입 밸브 각도에 따른 압축 행정 중 실린더 내 유동 특성 (In-Cylinder Compression Flow Characteristics According to Inlet Valve Angle)

  • 엄인용;박찬준
    • 한국자동차공학회논문집
    • /
    • 제14권4호
    • /
    • pp.77-83
    • /
    • 2006
  • A PIV(Particle Image Velocimetry) was applied to measure in-cylinder velocity field according to inlet valve angle during compression stroke. Two engines, one is conventional DOHC 4 valve and the other is narrow valve angle, were used to compare real compression flow. The results show that the flow patterns are well arranged compared with intake flow and the basic tumble flow structures are maintained until end compression stage regardless of valve angle. Also the results show that the tumble motion is intensified by momentum conservation during compression in normal engine. In the normal engine, the bulk shape of flow pattern is "Y" type at the top of cylinder and reverse "Y" type at the bottom of cylinder and weak reverse flow exists at the top of cylinder along cylinder center line. Otherwise, the other engine's flow pattern changes from "Y" type to "T" type at the top of cylinder during compression.

복합형 앵커의 인발거동에 관한 실험적 연구 (Experimental Study on Pullout Behavior of Composite Type Ground Anchor)

  • 홍석우
    • 한국지반공학회논문집
    • /
    • 제24권11호
    • /
    • pp.143-155
    • /
    • 2008
  • 지반앵커는 그라우트가 힘을 받는 형태에 따라 분류되는데 앵커의 인발시 그라우트가 인장을 받으면 인장형 앵커로 압축을 받으면 압축형 앵커로 분류된다. 본 연구에서는 인장과 압축을 동시에 받는 기구를 가진 복합형 앵커를 개발하였다. 현장시험을 위해 연약지반내의 앵커체 내부에 변형률게이지를 설치하였고, 측정된 시험결과를 통해 인장과 압축변형률이 동시에 발생하는 인발저항기구를 관찰할 수 있었다.

AN EXTENSION OF FIXED POINT THEOREMS CONCERNING CONE EXPANSION AND COMPRESSION AND ITS APPLICATION

  • Wang, Feng;Zhang, Fang
    • 대한수학회논문집
    • /
    • 제24권2호
    • /
    • pp.281-290
    • /
    • 2009
  • The famous Guo-Krasnosel'skii fixed point theorems concerning cone expansion and compression of norm type and order type are extended, respectively. As an application, the existence of multiple positive solutions for systems of Hammerstein type integral equations is considered.

연속섬유강화 플라스틱 복합재료의 반구형 압축성형성에 관한 연구 (A Study on the Hemisphere-Type Compression Molding for Continous Fiber-Reinforced Polymeric Composites)

  • 임용진;오영준;김이곤
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 1999년도 추계학술발표대회 논문집
    • /
    • pp.149-153
    • /
    • 1999
  • During a hemisphere-type compression molding, the wrinkles are caused by complex stress condition. It is very important to clarify the degree of wrinkles in order to have good products. In this paper, the effects of numbers of needling and initial area on the degree of wrinkles are studied. the degree of wrinkle is expressed as nonhomogeneity.

  • PDF

Analysis of Compression Ignition Combustion in a Schnurle-Type Gasoline Engine - Comparison of performance between direct injection and port injection systems -

  • Kim, Seok-Woo;Moriyoshi, Yasuo
    • Journal of Mechanical Science and Technology
    • /
    • 제18권8호
    • /
    • pp.1451-1460
    • /
    • 2004
  • A two-stroke Schnurle-type gasoline engine was modified to enable compression-ignition in both the port fuel injection and the in-cylinder direct injection. Using the engine, examinations of compression-ignition operation and engine performance tests were carried out. The amount of the residual gas and the in-cylinder mixture conditions were controlled by varying the valve angle rate of the exhaust valve (VAR) and the injection timing for direct injection conditions. It was found that the direct injection system is superior to the port injection system in terms of exhaust gas emissions and thermal efficiency, and that almost the same operational region of compression-ignition at medium speeds and loads was attained. Some interesting combustion characteristics, such as a shorter combustion period in higher engine speed conditions, and factors for the onset of compression-ignition were also examined.

줄봉형 탈곡기의 탈곡장치에 관한 연구 -탈곡과정의 역학적 분석- (A Study on the Threshing Mechanism of Rasp-Bar Type Thresher -Dynamic Analysis of Threshing Process-)

  • 박금주;스텐레이 제이 클라크;수실 브이 드와이어
    • Journal of Biosystems Engineering
    • /
    • 제18권4호
    • /
    • pp.371-381
    • /
    • 1993
  • Threshing operation is performed by impact, compression and friction forces inside the thresher. These values should be appropriate to the crop condition to enhance the threshing and separating efficiency and to decrease the grain damage. To analyze the threshing process inside the rasp-bar type thresher, impact, friction and compression forces were measured using transducers with strain gage circuits. To measure the impact forces and friction forces between the rasp-bar and crop, full bridge strain gage circuit was built on the rasp-bar holder. To measure the compression forces and circumferential friction forces between the concave and crop, two sets of full bridge strain gage circuits were built on the T-type concave transducer. Threshing work of wheat crop with 12% of moisture content was performed at 3 levels of compression ratio and with 3 replications. Each transducer could not measure the exact forces continuously because the transducer oscillates with the forces. However they could measure maximum forces and force distribution according to the time. Average friction coefficients between crop and concave was 0.61 not showing any significant difference according to the compression ratio. Average acceleration of the crop in the cylinder appeared from $70.6m/s^2$ to $140.8m/s^2$ according to the compression ratio. The velocity of the crop at the exit of the cylinder appeared from 10.7m/s to 15.0m/s according to the compression ratio.

  • PDF

Study on the performance of concrete-filled steel tube beam-column joints of new types

  • Liu, Dianzhong;Li, Hongxian;Ren, Huan
    • Computers and Concrete
    • /
    • 제26권6호
    • /
    • pp.547-563
    • /
    • 2020
  • In this paper, the influence of axial compression ratio on the mechanical properties of new type joints of side span of rectangular concrete-filled steel tubular column-H-type steel beam is studied. Two new types of side-span joints of rectangular concrete-filled steel tubular column-H-type steel beam are designed and quasi-static tests of five new type joints with 1:2 scale reduction ratios are performed. The axial compression ratio of joint JD1 is 0.3, 0.4 and 0.5, and the axial compression ratio of joint JD2 is 0.3 and 0.5. In the joint test, different axial forces were applied to the top of the column according to different axial compression ratios, and low-cyclic reciprocating load was applied on the beam. The stress and strain distribution, beam and column deformation, limit state, failure process, failure mechanism, stiffness degradation, ductile deformation and energy dissipation capacity of the joint were measured and analyzed. The results show that: with the increase of axial compression ratio, the ultimate bearing capacity of the joint decreases slightly, the plastic deformation decreases, and the stiffness and ductility decrease. According to the energy dissipation curve of the specimen, the equivalent damping coefficient also increases with the increase of axial compression ratio in a certain range, indicating that the increase of axial compression ratio can improve the seismic performance of the joint to a certain extent. The finite element method is used to simulate the joint test, and the test results are in good agreement with the simulation results.