• 제목/요약/키워드: compression stress

검색결과 1,474건 처리시간 0.023초

수종별 벌채부산물의 압축 변형 특성 (Compressive Deformation Characteristics of Logging Residues by Tree Species)

  • 오재헌;최윤성;김대현
    • 한국산림과학회지
    • /
    • 제104권2호
    • /
    • pp.198-205
    • /
    • 2015
  • 본 연구에서는, 수종별 벌채부산물의 압축 변형 특성을 규명함으로써 벌채부산물을 압축할 수 있는 장비의 개발을 위한 기초자료로 사용하고자 하였다. 만능재료시험기(Universial Testing Machine)를 이용한 압축재하 시험장치로 벌채부산물의 3회 반복 압축-변형 특성시험을 통해 수종별 벌채부산물의 목표밀도 압축에 필요한 소요압축력을 구하였다. 리기다소나무(Pinus rigida), 잣나무(Pinus koraiensis), 신갈나무(Quercus mongolica)의 반복 압축 시 응력-변형률 자료를 기반으로 지수함수 형태로 모델화한 것의 물리적 특성 값을 분석한 결과, 목표밀도 $350kg/m^3$$400kg/m^3$ 모두 벌채부산물 기계적 성질에 따른 응력계수는 압축횟수가 늘어나면서 줄어드는 경향을 나타냈으며, 반대로 변형율 계수는 늘어나는 경향을 나타냈다. 모델화를 통해 압축횟수가 증가할수록 압축에 요구되는 소요응력은 줄어들고, 변형율 변화에 비해 응력증가가 커지는 특성이 있으므로, 적절한 초기 압축력이 벌채부산물의 목표밀도 달성에 중요한 변수임을 확인할 수 있었다.

Tension-Compression Asymmetry in the Off-Axis Nonlinear Rate-Dependent Behavior of a Unidirectional Carbon/Epoxy Laminate at High Temperature and Incorporation into Viscoplasticity Modeling

  • Kawai, M.;Zhang, J.Q.;Saito, S.;Xiao, Y.;Hatta, H.
    • Advanced Composite Materials
    • /
    • 제18권3호
    • /
    • pp.265-285
    • /
    • 2009
  • Off-axis compressive deformation behavior of a unidirectional CFRP laminate at high temperature and its strain-rate dependence in a quasi-static range are examined for various fiber orientations. By comparing the off-axis compressive and tensile behaviors at an equal strain rate, the effect of different loading modes on the flow stress level, rate-dependence and nonlinearity of the off-axis inelastic deformation is elucidated. The experimental results indicate that the compressive flow stress levels for relatively larger off-axis angles of $30^{\circ}$, $45^{\circ}$ and $90^{\circ}$ are about 50 percent larger than in tension for the same fiber orientations, respectively. The nonlinear deformations under off-axis tensile and compressive loading conditions exhibit significant strain-rate dependence. Similar features are observed in the fiber-orientation dependence of the off-axis flow stress levels under tension and compression and in the off-axis flow stress differential in tension and compression, regardless of the strain rate. A phenomenological theory of viscoplasticity is then developed which can describe the tension-compression asymmetry as well as the rate dependence, nonlinearity and fiber orientation dependence of the off-axis tensile and compressive behaviors of unidirectional composites in a unified manner. It is demonstrated by comparing with experimental results that the proposed viscoplastic constitutive model can be applied with reasonable accuracy to predict the different, nonlinear and rate-dependent behaviors of the unidirectional composite under off-axis tensile and compressive loading conditions.

인장(引張) 및 압축부재(壓縮部材)와 적층수(積層數)가 플라타너스 집성재(集成材)의 휨성질(性質)에 미치는 영향(影響) (Effect of Tension, Compression Lamination and Number of Lamination on the Flexural Properties of Platanus occidentalis L. Laminated Beam)

  • 오세창;이필우
    • Journal of the Korean Wood Science and Technology
    • /
    • 제14권2호
    • /
    • pp.3-12
    • /
    • 1986
  • The aim of this study is to determine the flexural properties(Modulus of Rupture, Modulus of Elasticity) of Platanus occidentalis L. laminated beams fabricated with 1, 3, 5, 8, 15 lamination and Tension, Compression lamination. The results were as follows: 1. MOR increased with increasing number of lamination in 3, 5, 8, 15-beam and Tension lamination beam. MOR of Compression lamination beam was lower than that of 3-beam, MOR of vertical beam not having Tension or compression lamination was lower than that of horizontal beam, but MOR of vertical beam with tension or compression lamination was same or slightly higher than that of horizontal beam. 2. The allowable working stress showed the same tendency. This stress increased with increasing number of lamination. This value of Tension lamination beam was higher than that of compression lamination beam. 3. MOE of all laminated beams was higher than that of solid beam and Tension lamination beam was higher than that of 3-beam. MOE of Tension lamination beam was higher than that of Compression lamination beam. MOE of all vertical beam was higher than that of horizontal beam except for T-2, T-5, C-3. 4. Most beam failures appeared to begin in tension. These tension failures were classified into Splintering tension, Cross-grained tension, Simple tension, Brittle tension. All test beam failures could be classified into three categories. 1) Tension failure 2) Compression failure 3) Horizontal shear failure.

  • PDF

Numerical models for stress analysis of non-uniform corroded tubular members under compression

  • Chinh, Vu Dan;Nguyen, Ha Thi Thu
    • Structural Engineering and Mechanics
    • /
    • 제84권4호
    • /
    • pp.517-530
    • /
    • 2022
  • In re-assessing the Jacket-type fixed steel structures, the current standards often allow the simplicity of corrosion sections using local buckling or equivalent section approach to applying empirical formulae of frame stress and resistance analyses. However, those approaches can lead to significant errors for non-uniform corroded frames in a specific area, including force distribution, stress, and allowable strength of the tubular section, compared to the actual cases. This paper investigates a suitable approach to determine the actual stress on non-uniform corroded tubular frames under compression through the non-linear ABAQUS model by considering the effect of large deformation on the frame axis and the frame section. There are 3 scenarios of interest. In the 1st and 2nd scenarios with simple corrosion cases, the stress ratios using the numerical model and theoretical formulae correspond to the calculation of allowable strength reduction ratios in standards. However, scenario 3, which describes non-uniform corroded sections based on survey data, provides considerable differences in results. Therefore, it proves the reliable and effective results when using this method to analyze the resistance of the actual corroded section in the Jacket platforms.

변형률 의존성을 고려한 쌍곡선 모델의 개발 (Developement of Hyperbolic Model Considering Strain Dependency)

  • 이용안;김유성
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.644-655
    • /
    • 2008
  • Conventional hyperbolic model does not satisfactorily predict the overall stress-strain behaviors of various geomaterials. Tatsuoka and Shibuya(1992) suggest the generalized hyperbolic equation(GHE) considering strain dependency and calculated performance is in good agreement with precise triaxial compression test results of stress-strain relations over wide range of strains before peak stress condition in some cases, but GHE model also does not satisfactorily predict stress-strain relations as strain goes on state of peak stress in most cases. For improve a weak point of the GHE, in this study, modified form of generalized hyperbolic equation (MGHE model) is proposed which can predict highly nonlinear stress-strain behavior for various geomaterials from small strain to peak stress condition.

  • PDF

고강도 알루미늄 7175 합금 링롤재의 급냉 및 응력제거처리후 잔류응력 유한요소해석 및 측정 (Analysis and Measurement of Residual Stress of Al 7175 Ring Rolls after Quenching and stress Relieving)

  • 박성한;구송회;이방업;은일상
    • 한국추진공학회지
    • /
    • 제1권1호
    • /
    • pp.104-110
    • /
    • 1997
  • 고강도 알루미늄 합금 링롤재의 급냉, 링 팽창(expansion) 및 링 압축(compression) 응력제거처리 후 잔류응력을 예측하기 위하여 2차원 축대칭 열해석 및 탄소성 해석을 수행하였다. 급냉 및 응력제거처리 후 2단 과시효 처리(T73)된 링롤재에 대하여 3단계 절단법(Three step sectioning method)을 적용하여 링롤재의 두께에 따른 잔류응력 분포를 측정하였으며, 측정결과를 급냉 및 응력제거처리후 잔류응력 해석결과와 비교분석하였다. 링의 급냉후 원주 및 축방향의 잔류응력 해석값은 T73후 측정값과 비슷한 경향을 보였으며, 링의 내면과 외면에서 압축응력을 나타내었고 중심에서 인장응력을 나타내었다. 잔류응력은 링 팽창(T7351) 및 링 압축(T7352) 적용후 T73에 비해 현저히 감소하였으며, 축방향의 제거 효과가 원주방향보다 우수하게 나타났다. 또한 링 압축에 의한 제거효과가 링 팽창보다 크게 나타났다. 링롤재의 응력제거처리는 제거 효과 및 실용성 측면에서 링 압축 공정이 유리하며, 치수제어 및 장비용량 측면에서 링 팽창 공정이 유리하다는 결론을 얻었다.

  • PDF

유한요소 해석을 통한 열교 차단장치의 압축판 최적형상 설계 (The Optimal Shape Design for the Compression Joint of Thermal Bridge Breaker using FEM)

  • 신동현;김영호;김형준
    • 한국디지털건축인테리어학회논문집
    • /
    • 제13권2호
    • /
    • pp.17-25
    • /
    • 2013
  • It is important to eliminate thermal bridge for achieving passive and environmental-friendly buildings. Structural members may frequently act as thermal bridges that become a conduit of energy. it is emphasized that thermal bridge breaker (TBB) system is necessary for blocking thermal bridge of the structural members. This TBB system has to maintain a performance to tensile and compressive stress which arises in member section in order to being realized structurally. Thus, it is composed with anchorage devices which obtain continuity with structural members inside building and rebar of cantilever balcony, and compression joint which resist compression stress occurring to TBB. Applying method of TBB's compression joint is designed to have high strength with comparatively small element section which can cover external load. This study carried out finite elements method based on compression experiment. Throughout the FEM analysis, this study provides information on finding optimal shape for compression joint of TBB which can suitably apply to current building balcony of Korea.

Studies on Variability of Wood Properties in Stem of Pinus koraiensis (II) - Differences in Tracheid Length, Microfibril Angle, and Compression Strength in South and North Sides of Stem -

  • Kim, Byung-Ro;Mishiro, Akiyoshi
    • Journal of the Korean Wood Science and Technology
    • /
    • 제26권2호
    • /
    • pp.45-50
    • /
    • 1998
  • Tracheid length, microfibril angle, and compression strength were examined in south and north sides of Pinus koraiensis. The sample tree was 57 years old and had been planted in central Korea. Tracheid length on the south side of the tree ranged from 2.87 to 3.40mm and on the north ranged from 3.60 to 3.53mm and mean values were 3.15 mm for the south and 3.26mm for the north. Tracheid length was 0.11 mm longer on the north side than on the south. Microfibril angle on the south side ranged from $12.6^{\circ}$ to $20.3^{\circ}$ and that on the north from $6.8^{\circ}$ to $13.5^{\circ}$; mean values were $16.6^{\circ}$ on the south side and $9.6^{\circ}$ on the north. Microfibril angle was $7.0^{\circ}$ greater on the south side than on the north side. For compression strength on the south and north sides, significant difference at the 95% level was found only at l.3m above the ground level of the sample tree; for compression limit stress, significant difference at this level was found at 1.3 and 5.3m above the ground level. However, compression strength and compression limit stress were greater on the north side than on the south side.

  • PDF

반복 일축응력하의 알루미나 파괴거동에 미치는 압축응력의 영향 (The Effect of Compressive Stress on Fracture Response of Alumina under Uniaxial Stress Cycling)

  • 김기태;서정;백성기
    • 한국세라믹학회지
    • /
    • 제28권9호
    • /
    • pp.712-720
    • /
    • 1991
  • The effect of cyclic compressive stress on fracture responses of Al2O3 was investigated under uniaxial stress cycling. Experimental data were obtained for Al2O3 tension specimens under uniaxial tension-unloading and tension-compression cyclic loading conditions. To investigate the effect of compressive stress on the crack growth, theoretical results from the crack growth rate were compared with measured stress vs. failure relations. At low stress level in tension-compression cycling, residual tensile strains were also observed about failure time.

  • PDF

Stress-strain behavior of geopolymer under uniaxial compression

  • Yadollahi, Mehrzad Mohabbi;Benli, Ahmet
    • Computers and Concrete
    • /
    • 제20권4호
    • /
    • pp.381-389
    • /
    • 2017
  • The various types of structural materials that are available in the construction industry nowadays make it necessary to predict their stress-strain behavior. Geopolymer are alternatives for ordinary Portland cement concrete that are made from pozzolans activation. Due to relatively new material, many mechanical specifications of geopolymer are still not yet discovered. In this study, stress-strain behavior has been provided from experiments for unconfined geopolymers. Modulus of Elasticity and stress-strain behavior are critical requirements at analysis process and knowing complete stress-strain curve facilitates structural behavior assessment at nonlinear analysis for structures that have built with geopolymers. This study intends to investigate stress-strain behavior and modulus of elasticity from experimental data that belongs for geopolymers varying in fineness and mix design and curing method. For the sake of behavior determination, 54 types of geopolymer are used. Similar mix proportions are used for samples productions that have different fineness and curing approach. The results indicated that the compressive strength ranges between 7.7 MPa and 43.9 MPa at the age of 28 days curing.