• Title/Summary/Keyword: compression spring

Search Result 104, Processing Time 0.03 seconds

Study on air spring modeling method for railway vehicle dynamics (동역학 해석용 Air Spring Modeling 방법에 대한 고찰)

  • Seong, Jae-Ho;Lee, Kang-Wun;Park, Gil-Bae;Yang, Hee-Joo
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2236-2241
    • /
    • 2008
  • To predict the dynamic behaviour of railway vehicle, the complex vehicle structure has been described by mathmatical model such as mass, spring and damper. Air-spring has played a major role to improve dynamic characteristics, vibration isolation and ride comfort. The mechanical behaviour of air spring is very complicated. The behaviour is based on fluid and thermodynamic mechanisms. The main parameters of air spring are stiffness due to compression of the air in the spring and surge reservoir, change of area stiffness and orifice damping. In this paper, we have studied an air-spring modeling method and compared the difference between calculation and test.

  • PDF

Study of Spring Modeling Techniques for Kinematic and Dynamic Analysis of a Spring Operating Mechanism for the Circuit Breaker (회로차단기용 스프링조작기의 기구동역학 해석을 위한 스프링모델링 기법 연구)

  • Sohn, Jeong-Hyun;Lee, Seung-Kyu;Kim, Seung-Oh;Yoo, Wan-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.7 s.262
    • /
    • pp.777-783
    • /
    • 2007
  • Since the performance of the circuit breaker mainly depends on the spring operating mechanism, the analysis of the spring operating mechanism is required. The spring, especially closing spring, stores the deformation energy due to the compression and then accelerates the big loads rapidly in the circuit breaker. To accurately carry out the kinematic and dynamic analysis of the circuit breaker, the precise modeling of the spring behavior is necessary. In this paper, the static stiffness of the spring is captured by using the tester. A simple mechanism similar to the spring operating mechanism was designed to generate the release motion of the spring. A high speed camera was used to capture the behavior of the spring. Three types of spring models such as a linear spring model, modal spring model, and nodal spring model are suggested and compared with the experimental results.

The Change of Mechanical Properties with Forming Conditions of Thermoplastic Composite in Compression Molding (열가소성 복합재료의 압축성형조건에 따른 기계적 특성 변화)

  • Lee, Jung-Hui;Lee, Ho-Eon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.9
    • /
    • pp.1416-1422
    • /
    • 2001
  • The objective of this work was to characterize mechanical properties of thermoplastic composites with various forming conditions in compression molding. Randomly oriented long glass fiber reinforced polypropylene(PP) was used in this work. The composite materials contained 20%, 30%, and 40% glass fiber by weight. Compression molding was conducted at various mold temperatures and charge sizes. The temperatures on the mold surface and at the material in the mid-plain were monitored during the molding. Differential Scanning Calorimeter was used to measure crystallinity at both in-side and out-side of the sheet material. Crystallinity at each temperature was also measured by X-ray diffractometer. Dimensional stability was studied at various conditions with the spring forward angle. Among the processing parameters, the crystallization time at the temperature above 130$^{\circ}C$, was found to be the most effective. Spring-forward angle was reduced and the tensile modulus was increased as the mold temperature increased.

Estimation of Compressive Stiffness of Polyurethane Rubber Springs and Its Application (폴리우레탄 고무 스프링의 압축 강성도 추정 및 적용)

  • Choi, Eunsoo;Park, Seungjin;Woo, Daeseung
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.3
    • /
    • pp.229-236
    • /
    • 2017
  • The purpose of this study is to investigate the behavior and characteristics of rubber springs and calculate the compressive stiffness by performing dynamic compression tests of rubber springs. In order to carry out the dynamic compression test of rubber spring, total 9 rubber springs were tailored by calculating the shape factor of L80-D55, L90-D58, and L100-D60, and used for the experiments. Experiments were performed by controlling the compression according to the length of the rubber spring, and the compression was increased in the order of 5%, 10%, 15%, 20% and 25% of the strain. From the experimental results, the force-strain curves were obtained and it was confirmed that strength decrease and strength increase phenomenon occurred as the strain increased. In addition, it was confirmed that the decrease of stiffness and the increase of stiffness were clearly observed according to the size and diameter of the rubber spring, and the effective compression stiffness was estimated using the slope of the force-strain curve. By using the effective compressive stiffness, design values that can be used in actual design were presented.

Spring-back Prediction of DP980 Steel Sheet Using a Yield Function with a Hardening Model (항복함수 및 경화모델에 따른 DP980 강판의 스프링백 예측)

  • Kim, J.H.;Kang, G.S.;Lee, H.S.;Kim, J.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.25 no.3
    • /
    • pp.189-194
    • /
    • 2016
  • In the current study, spring-back of DP980 steel sheet was numerically evaluated for U-bending using a yield function with a hardening model. For spring-back prediction, two types of yield functions - Hill'48 and Yld2000-2d - were considered. Additionally, isotropic hardening and the Yoshida-Uemori model were used to investigate the spring-back behavior. The parameters for each model were obtained from uniaxial tension, uniaxial tension-compression, uniaxial tension-unloading and hydraulic bulging tests. The numerical simulations were performed using the commercial software, PAM-STAMP 2G. The results were compared with experimental data from a U-bending process.

Development of Hydraulic Testing Machine for Flexible Seal on Solid Rocket Motor (고체모터 플렉시블 씰을 위한 수압시험장치 개발)

  • Kwon, Tae-Hoon;Rho, Tae-Ho;Kim, Byung-Hun;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.227-230
    • /
    • 2008
  • Movable nozzle with a flexible seal have been used for Thrust Vector Control of the Solid Rocket Motor. The Hydraulic Testing Machine is consisted of Chamber, Actuator, Counterpotentiometer, and evaluates performance of Flexible seal for spring torque and axial compression. The qualification test of Flexible seal was conducted on design condition. A study fix up method of formulation, operation, inspection on Hydraulic testing machine.

  • PDF

A Study on the Optimal Design of Gas Spring for Vehicle (자동차용 GAS SPRING의 최적 설계에 관한 연구)

  • 김영범
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.11
    • /
    • pp.39-45
    • /
    • 1998
  • Gas springs have been widely used in motor vehicles as well as in most areas of industry. Instead of coil springs, these gas springs are easily opreated to open(extension process) or close (compression process) the doors because $N_2$ gas with high pressure and oil are charged in tube. Most of manufacturers are using the trial & error method in order to decide its specification(reaction force, damping force), which tends to waste time and money. Therefore, gas springs have been improved by properly changing the control pressure of $N_2$ Gas with its mounting location and weight to maximize its effect and to minimize its space. Although it has been researched on damping structure to minimize impact which is applied to vehicle when its back door is fully opened, the characteristics of damping structure are not known clearly. There(ore, this paper will not only clearly define the effect of important factors(open & close force)for gas springs through theoretical analysis but also provide optimum design specification through development of program to avoid traditional method of specification determination such as the trail It error method which is widely used in whole industries including automotive industry.

  • PDF

A Study on Reinforcing Effect of Multi-Bar Spring Nailing (다철근 스프링 네일링 공법의 보강효과 검토에 관한 연구)

  • Lee, Choong-Ho;Jung, Young-Jin;Kim, Dong-Sik;Chae, Young-Su
    • Journal of the Society of Disaster Information
    • /
    • v.3 no.2
    • /
    • pp.147-169
    • /
    • 2007
  • This study investigates the reinforcing effects of the Multi-bar Spring nails with respect to the conventional Soil-nails in artificial slopes. Based on wide experience related to design and construction, soil nails have been widely applied to reinforce slope in the world. Multi-bar spring nails are one of the improved soil nailing methods. These method maximizes bending, shearing, pull-out resistance for those multi-nails, not unit nail, that are inserted in the borehole using special spacer at regular intervals. In addition, because cutting plane is confined effect resulting from a pressured plate at the end of the nails with compression spring equipment, slope stability is secured using MS-nailing method. Analyzing bending, pull-out, shearing condition of MS-nail, it was examined throughly elastic region, load transfer capacity, reinforcing effect on cutting plate of MS-nails. In addition, Pilot and laboratory tests, numerical analysis were carried out to verify the superiority of MS-nailing method. In case, MS nailing method is applied to reinforce artificial slope, it was analyzed that bending, pull-out, shearing resistance was increased more than existing nailing method was applied. In this study, it was shown that surface failure was more or less prevented using MS-nailing method, confining effect on cutting plane using spring stuck to flexible equipment.

  • PDF

A study on the behavior of the piston with varying friction force in the double cylinder-typed extension gas spring (2중 실린더 구조를 갖는 인장 가스스프링의 마찰력 변화에 따른 피스톤 거동에 대한 연구)

  • Jeong, Nam-Gyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.9-14
    • /
    • 2018
  • The function of gas springs is based on the compression of a gas. They are used in a wide variety of industries, and demand for them is increasing. Gas springs can be divided into compression and extension springs. Extension springs have not been studied much in relation to control of the piston speed, unlike compression springs. In this study, the magnitude of the piston rebound pressure was theoretically predicted by calculating the pressure loss in a double-cylinder extension gas spring. Numerical simulations of the piston behavior were carried out for small and large amounts of friction between the piston and the cylinder. FLUENT was used for the simulation with a 6-DOF model and UDF to simulate the behavior of the piston. The calculation regions of the front and rear of the piston were separated, and different types of grids were generated in the regions to implement a dynamic mesh using only a layering method. The results show that the piston returns with the target speed in both cases. However, the patterns of the piston behavior reaching the final speed are different.

Strength Analysis for Compressed Coil Spring in the Gage - Adjustable Wheelset System (궤간 가변 윤축의 압축스프링에 대한 강도해석)

  • Kim, Chul-Su;Ahn, Seung-Ho;Chung, Kwang-Woo;Jang, Seung-Ho;Jang, Kook-Jin;Kim, Jung-Kyu
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1012-1017
    • /
    • 2007
  • To reduce the cost and the time of transport in Eurasian railroad networks such as TKR(Trans-Korea Railway), TCR(Trans-China Railway) and TSR(Trans-Siberia Railway) owing to the problem of different track gauges (narrow/standard/broad gauge), it is important to develop the gauge - adjustable wheelset system to adapt easily to these gauges. Moreover, this system accomplishes periodically a conversion operation from the gauge variable segment between different gauge. Gauge adjustable compression coil spring during conversion process accomplishes repetitively a central role for operation mechanism between flange and locking part. Therefore, to assure the safety of the gauge-adjustment wheelset system, it is necessary to stress analysis of the optimized spring in the system. In this study, it was performed to optimal design of the spring for stress analysis by using the genetic algorithm.

  • PDF