• 제목/요약/키워드: compression speed

검색결과 695건 처리시간 0.024초

내연기관의 연소실험을 위한 신형 급속 압축-팽창 장치의 개발 (Development of a New Rapid compression-Expansion Machine for Combustion Test of Internal Combustion Engine)

  • 배종욱
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2000년도 춘계학술대회 논문집(Proceeding of the KOSME 2000 Spring Annual Meeting)
    • /
    • pp.45-51
    • /
    • 2000
  • Investigators who study on combustion in the cylinders of reciprocating piston type internal combustion engines have been encountered embarrassments due to the difficulties of adjusting specific parameter without interfacing other parameters such as cylinder wall temperature composition of gas in the cylinder existence of cylinder lubricant etc. Rapid compression-expansion machine the position and speed of piston of which are able to be controlled by means of a system controlled electrically and speed of piston of which are able to be controlled by means of a system controlled electrically and actuated hydraulically could be utilized as one of the most preferable countermeasures against those difficulties. Several units of rapid compression-expansion machines were developed but the speed up of frequency of piston movement still is the problem to be improved to cope with actual speed of internal combustion engines. Authors designed and manufactured a new rapid compression-expansion machine electrically controlled hydraulically actuated and computer programed and then examined the performance of one. Results of a set of experiments revealed acquirements of certain improvement of frequency of piston movement preserving the stability of system response and reproducing accurate compression ratio of cylinder those are the key function for the in-cylinder combustion experiments of internal combustion engines.

  • PDF

고속철도 터널입구에서 형성되는 압축파의 특성에 관한 연구 (Characteristics of High-Speed Railway Tunnel Entry Compression Wave)

  • 김희동;김태호;이종수;김동현
    • 대한기계학회논문집B
    • /
    • 제23권2호
    • /
    • pp.234-242
    • /
    • 1999
  • Flow phenomena such as the pressure transients Inside a high-speed railway tunnel and the Impulsive waves at the exit of the tunnel are closely associated with the characteristics of the entry compression wave, which is generated by a train entering the tunnel. Tunnel entrance hood may be an effective means for alleviating the Impulsive waves and pressure transients. The objective of the current work is to explore the effects of the train nose shape and the entrance hood on the characteristics of the entry compression wave. Numerical calculations using the method of characteristics were applied to one-dimensional, unsteady, compressible flow field with respect to high-speed railway/tunnel systems. Two types of the entrance hoods and various train nose shapes were employed to reveal their influences on the entry compression wave for a wide range of train speeds. The results showed that the entry compression wave length increases as the train nose becomes longer and the train speed becomes lower. The entry compression wave length in the tunnel with hood becomes longer than that of no hood. Maximum pressure gradient in the compression wavefront reduces by the entrance hood. The results of the current work provide useful data for the design of tunnel entrance hood.

단섬유강화 고분자 복합재료의 압축성형에 있어서 섬유배향에 관한 연구 (The Planar Orientation of Fibers During Compression Molding of Short-Fiber Reinforced Polymeric Composites)

  • 김혁;전상기;이동기;한길영;김이곤
    • 한국해양공학회지
    • /
    • 제10권3호
    • /
    • pp.34-43
    • /
    • 1996
  • In this study basic equations of fiber orientations is cimpared with experimental results. It is found that fiber orientations of short fiber reinforced polymeric composite under compression molding are governed by slope of flow speed in x-y direction. Fiber orientation angle of mold is also found to increase with closure speed and the compression ratio. At the middle of the mold, the slope of flow speed is larger in x-direction than in y-direction. At the wall of the mold, the shope of flow speed in y-direction occurs due to the effect of friction, hence affects the fiber orientation. The effect of partial flow, which incurs y-direction orientation causes to increase the fiber orientation angle at the fore part of the flow.

  • PDF

내연기관의 연소실험을 위한 신형 급속 압축-팽창 장치의 개발 (Development of a New Rapid Compression-Expansion Machine for Combustion Test of Internal Combustion Engine)

  • 정남훈;배종욱
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권5호
    • /
    • pp.69-75
    • /
    • 2000
  • Investigators who study on combustion in the cylinders of reciprocating piston type internal combustion engines have been encountered embarrassments due to the difficulties of adjusting specific parameter without interfacing other parameters such as cylinder wall temperature, composition of gas in the cylinder, existence of cylinder lubricant etc. Rapid compression expansion machine, the position and speed of piston of which are able to be controlled by means of a system controlled electrically, and actuated hydraulically could be utilized as one of the most preferable countermeasures against those difficulties. Several units of rapid compression expansion machines were developed but the speed up of frequency of piston movement still is the problem to be improved to copy with actual speed of internal combustion engines. Authors designed and manufactured a new rapid compression-expansion machine electrically controlled, hydraulically actuated, and computer programed and then examined the performance of one. Results of a set of experiments revealed acquirements of certain improvement on frequency of piston movement preserving the stability of system response and reproducing accurate compression ratio of cylinder, those are the key function for the in-cylinder combustion experiments on internal combustion engines.

  • PDF

고속철도 터널내를 전파하는 압축파의 일차원 수치해석 (One-Dimensional Numerical Study of Compression Wave Propagating in High-Speed Railway Tunnel)

  • 김희동;엄용균;송미일태
    • 대한기계학회논문집
    • /
    • 제19권5호
    • /
    • pp.1280-1290
    • /
    • 1995
  • In order to investigate the compression wave propagating in a high-speed railway tunnel, a numerical calculation was applied to the wave phenomenon occurring in a model tunnel. Unsteady, one-dimensional inviscid or viscous flows were solved by an explicit TVD scheme, and the calculated flows were compared with the results of measurement in real tunnels. Tunnel noises caused by emission of the compression wave were characterized in terms of excess pressure of compression wave, pressure gradient in the wave front and width of the compression wave. Calculated attenuation, pressure gradient and width of compression wave with the propagating distance agreed with the results of measurement in the real tunnels. The results also show that tunnel noises are proportional to the train velocity entering the tunnel.

고속철도 터널에서 발생하는 파동현상에 관한 충격파관의 연구(1) - 압축파의 특성에 대하여 - (Study of Shock Tube for Wave Phenomenon in High Speed Railway Tunnel(1) - On the characteristics of Compression Wave -)

  • 김희동
    • 대한기계학회논문집
    • /
    • 제18권10호
    • /
    • pp.2686-2697
    • /
    • 1994
  • When a railway train enters a tunnel at high speed, a compression wave is formed in front of the train and propagates along the tunnel. The compression wave subsequently emerges from the exit of the tunnel, which causes an impulsive noise. In order to estimate the magnitudes of the noises and to effectively minimize them, the characteristics of the compression wave propagating in a tunnel must be understood. In the present paper, the experimental and analytical investigations on the attenuation and distortion of the propagating compression waves were carried out using a model tunnel. This facility is a kind of open-ended shock tube with a fast-opening gate valve instead of a general diaphragm. One-dimensional flow model employed in the present study could appropriately predict the strength of the compression wave, Mach number and flow velocity induced by the compression wave. The experimental results show that the strength of a compression wave decreases with the distance from the tunnel entrance. The decreasing rate of the wave strength and pressure gradient in the wave is strongly dependent on the strength of the initial compression wave at the tunnel entrance.

Improvement of Image Sensor Performance through Implementation of JPEG2000 H/W for Optimal DWT Decomposition Level

  • Lee, Choel;Kim, BeomSu;Jeon, ByungKook
    • International journal of advanced smart convergence
    • /
    • 제6권1호
    • /
    • pp.68-75
    • /
    • 2017
  • In this paper, a particular application of digital photos, remote sensing, remote shooting air moving, high-resolution and high compression of medical images required by remote shooting of JPEG2000 standard applied in the field of hardware design, production was implemented. JPEG2000 standard for image compression using the software implementation of the processing speed is very slow compared to conventional JPEG disadvantages, and also the standard of JPEG2000 DWT (Discrete wavelet transform) to improve the level of compression for image data if processing speed is a phenomenon that has degraded. In order to solve these JPEG2000 compression / decompression groups were designed and applied. In this paper, the optimal JPEG2000 compression / reservoir hardware by changing the level for still image compression, faster computation speed and quality has shown improvement.

Performance Characteristics of a Household Refrigerator with Dual Evaporators Using Two-Stage Compression Cycle

  • Joo, Young-Ju;Kim, Young-Heon;Lee, Moo-Yeon;Yoon, Won-Jae;Kim, Yong-Chan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제17권3호
    • /
    • pp.107-113
    • /
    • 2009
  • The objective of this study is to investigate performance characteristics of a household refrigerator using a two-stage compression cycle. The performance of the two-stage compression cycle was measured by varying the compressor speed, condensing temperature, and evaporating temperature. The COP of the two-stage compression cycle was analyzed and then compared with that of the single-stage compression cycle. The optimum combination of compressor speeds for a low- and a high-stage was determined. The COP of the two-stage compression cycle using a PTC (parallel two-stage compression) method was 5.85% higher than that of a STC (serial two-stage compression) method at optimum operating conditions.

냉시동시 압축착화 조건의 상관관계에 관한 수소 HCCI 기관의 실험적 연구 (An Experimental Study on Correlation of Compression Ignition Condition at Cold Start with Hydrogen HCCI Engine)

  • 이광주;이종구;안병호;이종태
    • 한국수소및신에너지학회논문집
    • /
    • 제23권6호
    • /
    • pp.628-633
    • /
    • 2012
  • It was found that the pure hydrogen-air pre-mixture was self-ignited at a high compression ratio without any assisting method in room temperature, thus refuting the preconception that compression ignition of hydrogen engine was impossible. Therefore, in order to analyze the correlation of compression ignition condition at cold start with hydrogen HCCI engine clearly, the possibility of compression igniting compression ratio is investigated with the change of equivalence ratio and engine speed, experimentally. As the results, it is confirmed that the possibility of compression-igniting compression ratio at cold start was decreased by increasing equivalence ratio due to decreasing auto-ignition temperature. In addition, it is grasped that the possibility of compression-igniting compression ratio at cold start is decreased around 14.9% by increasing engine speed at same supply energy.

미기압파에 의한 터널 출구 소음 저감을 위한 고속철도 터널 형상 개선에 관한 연구 (A Study on Tunnel Entry Design Considering the Booming Noise Resulting from Micro-Pressure Wave)

  • 목재균;최강윤;유재석
    • 소음진동
    • /
    • 제7권6호
    • /
    • pp.959-966
    • /
    • 1997
  • In general, the booming noise intensity at tunnel exit is strongly related to the gradient of the compression wave front created by high speed train entering the tunnel. This paper presents some results in relation with the compression wave front produced when the high speed train enters a tunnel. Four kinds of tunnel entrance shape with real dimensions were studied to investigate the formation of compression wave front inside tunnel by train entering tunnel. Computations were carried out using three-dimensional compressible Euler equation with vanishing viscosity and conductivity of fluid. According to the results, the flow disturbances occured at tunnel entrance were eliminated by tunnel hood with same cross sectional area. The compression wave front is formed completely at 30-40m from tunnel entrance. The maximum pressure gradient of compression wave front is reduced by 29.8% for the inclined tunnel hood and reduced by 21.5% for the tunnel hood with holes at the top face with tunnel without hood. The length of the inclined hood is 15m and the length of the hood with holes is 20m.

  • PDF