• 제목/요약/키워드: compressibility test

검색결과 139건 처리시간 0.023초

송도 지역 실트질 점성토 고화처리를 위한 최적 배합 조건 (The Optimum Mixture Condition for Stabilization of Songdo Silty Clay)

  • 김준영;장의룡;정충기;장순호
    • 한국지반공학회논문집
    • /
    • 제27권5호
    • /
    • pp.5-15
    • /
    • 2011
  • 최근 연안지역에서의 대형건설공사 증가로 인해 대규모의 연약지반처리 공사가 많이 이루어지고 있다. 이로 인해, 흙에 시멘트나 석회를 첨가하여 안정성과 내구성을 증대시키는 고화안정처리공법이 연약지반 현장의 표층처리에 빈번히 사용되고 있다. 고소성, 고압축성의 초연약 점성토를 대상으로 한 고화처리 연구는 그 동안 많이 이루어져 왔으나 상대적으로 낮은 소성성과 압축성을 가진 실트질 점성토를 대상으로 한 고화처리 연구는 찾아보기 힘들다. 따라서 본 연구에서는 송도 지역의 저소성 실트질 점성토를 배합 함수비, 개량재 배합비, 양생 기간을 변화시키며 시멘트와 생석회로 고화처리하고, 일축압축 시험 및 평판재하시험을 통하여 강도 특성을 파악하였다. 일축 압축 시험과 평판 재하 시험으로부터 상당히 일치하는 강도 특성 결과를 얻었으며, 이를 바탕으로 개량토를 매립지 표토층으로 이용하였을 경우 건설 장비의 주행성을 평가하였다. 이상의 결과로부터 송도 지역 점성토를 고화 처리하는 최적의 조건을 얻을 수 있었다.

물질함수특성을 고려한 연약 점토지반의 압밀모델 및 수치해석 (Consolidation Model and Numerical Analysis for Soft Clay Ground Considering Characteristics of Material Function)

  • 전제성;이장덕;이송
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제8권2호
    • /
    • pp.123-136
    • /
    • 2004
  • Terzaghi의 1차원 압밀이론은 그 유도과정에 있어 몇 가지 중요한 가정사항을 내포하고 있으며, 이로인해 이 이론을 연약 점토지반의 압밀거동에 적용하는데는 많은 모순이 발생할 수 밖에 없다. 특히, 미소변형 및 선형 물질함수에 대한 가정은 실제 현장의 압밀현상과 비교할 때 많은 오류를 발생시키는 원인으로 작용한다. 이러한 이유에서, Gibson 등은 물질함수의 비선형성을 고려할 수 있는 1차원 비선형 유한변형률 압밀이론에 대한 엄밀해를 발표하였다. 그러나, 이 이론은 연직배수공법이 적용된 일반적인 연약 점토지반의 압밀현상에는 적용시킬 수 없다는 단점을 내포하고 있다. 본 연구에서는 포화된 지반의 수직 및 수평방향 배수를 고려하며 지반의 자중 및 투수성과 압축성에 대한 물질함수의 비선형적 특성을 반영할 수 있는 압밀모델을 제안하였다. 또한 제안된 모델을 실제 압밀현상에 적용하기 위한 수치해석 기법을 개발하였다. 수치해석에 이용된 물질함수의 특성은 표준압밀 시험 및 로우셀 시험, 개량 표준압밀 시험등을 이용하여 산정되었다.

비선형 점탄소성 모델을 이용한 2차압밀이 포함된 수정압축지수개발 (Suggestion of Modified Compression Index for secondary consolidation using by Nonlinear Elasto Viscoplastic Models)

  • 최부성;임종철;권정근
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.1115-1123
    • /
    • 2008
  • When constructing projects such as road embankments, bridge approaches, dikes or buildings on soft, compressible soils, significant settlements may occur due to the consolidation of these soils under the superimposed loads. The compressibility of the soil skeleton of a soft clay is influenced by such factors as structure and fabric, stress path, temperature and loading rate. Although it is possible to determine appropriate relations and the corresponding material parameters in the laboratory, it is well known that sample disturbance due to stress release, temperature change and moisture content change can have a profound effect on the compressibility of a clay. The early research of Tezaghi and Casagrande has had a lasting influence on our interpretation of consolidation data. The 24 hour, incremental load, oedometer test has become, more or less, the standard procedure for determining the one-dimensional, stress-strain behavior of clays. An important notion relates to the interpretation of the data is the ore-consolidation pressure ${\sigma}_p$, which is located approximately at the break in the slope on the curve. From a practical point of view, this pressure is usually viewed as corresponding to the maximum past effective stress supported by the soil. Researchers have shown, however, that the value of ${\sigma}_p$ depends on the test procedure. furthermore, owing to sampling disturbance, the results of the laboratory consolidation test must be corrected to better capture the in-situ compressibility characteristics. The corrections apply, strictly speaking, to soils where the relation between strain and effective stress is time independent. An important assumption in Terzaghi's one-dimensional theory of consolidation is that the soil skeleton behaves elastically. On the other hand, Buisman recognized that creep deformations in settlement analysis can be important. this has led to extensions to Terzaghi's theory by various investigators, including the applicant and coworkers. The main object of this study is to suggestion the modified compression index value to predict settlements by back calculating the $C_c$ from different numerical models, which are giving best prediction settlements for multi layers including very thick soft clay.

  • PDF

수직원통 주위의 자유표면 층류운동의 수치해석 (Numerical Simulation of Laminar Flows for a Circular Cylinder Vertically Piercing Free Surface)

  • 윤범상;김윤호
    • 대한조선학회논문집
    • /
    • 제30권1호
    • /
    • pp.104-114
    • /
    • 1993
  • 본 논문에서는 점성유동에 미치는 자유표면의 영향을 조사하기 위하여 자유표면을 수직으로 관통하는 원통 주위의 유동을 수치 시뮬레이션 하였다. 수치해석 방법으로서 Artificial Compressibility Method를 사용하였으며, 계산은 낮은 레이놀드수의 영역에 국한하였다. 계산결과는 자유표면에 가까운 유체영역에서 유선, 점성항력 등에 적지않은 영향이 있음을 보여주고 있다. 자유표면의 존재는 물체 후류 중의 와류를 물체로 부터 분리시키는 방향으로, 점성항력을 감소시키는 방향으로 작용하는 것으로 보인다.

  • PDF

탈크가 그라비어 인쇄적성에 미치는 영향 제2보 - 탈크가 바인더 절감에 미치는 영향 - (Effect of Talc on Gravure Printability(II) -Effect of talc on binder reduction for matte grade production-)

  • 정희석;김창근;이용규
    • 펄프종이기술
    • /
    • 제41권3호
    • /
    • pp.8-12
    • /
    • 2009
  • According to a previous study, talc as a coating pigment can improve the viscosity and the water retention of coating color, the compressibility of coating layer, and hence gravure printability. Talc is also well known for its larger particle size than other pigments, which implies that less binder may be need due to its smaller specific surface area. This study investigated the possibility of reducing binder content for matte grade paper. Coating color was prepared with the Cotalc-2000, which showed the best properties in the previous study. The binder content was varied and the effect of binder content on the physical properties of coated paper and the gravure printability was investigated. It was shown that binder content could be reduced when talc was used as a coating pigment. The reduction in binder content did not influence gloss, roughness and the print density of coated paper but showed improvement in paper porosity, compressibility and missing dot.

Laboratory experiments on the improvement of rockfill materials with composite grout

  • Wang, Tao;Liu, Sihong;Lu, Yang
    • Geomechanics and Engineering
    • /
    • 제17권3호
    • /
    • pp.307-316
    • /
    • 2019
  • Dam deformation should be strictly controlled for the construction of 300 m-high rockfill dams, so the rockfill materials need to have low porosity. A method of using composite grout is proposed to reduce the porosity of rockfill materials for the construction of high rockfill dams. The composite grout is a mixture of fly ash, cement and sand with the properties of easy flow and post-hardening. During the process of rolling compaction, the grout admixture sprinkled on the rockfill surface will gradually infiltrate into the inter-granular voids of rockfill by the exciting force of vibratory roller to reduce the porosity of rockfill. A visible flowing test was firstly designed to explore the flow characteristics of composite grout in porous media. Then, the compressibility, shear strength, permeability and suffusion susceptibility properties of composite grout-modified rockfill are studied by a series of laboratory tests. Experimental results show that the flow characteristics of composite grout are closely related to the fly ash content, the water-to-binder ratio, the maximum sand size and the content of composite grout. The filling of composite grout can effectively reduce the porosity of rockfill materials, as well as increase the compression modulus of rockfill materials, especially for loose and gap-graded rockfill materials. Composite grout-modified rockfill tends to have greater shear strength, larger suffusion erosion resistance, and smaller permeability coefficient. The composite grout mainly plays the roles of filling, lubrication and cementation in rockfill materials.

Compressibility of fine-grained sediments based on pore water salinity changes

  • Junbong Jang;Handikajati Kusuma Marjadi
    • Geomechanics and Engineering
    • /
    • 제33권1호
    • /
    • pp.113-120
    • /
    • 2023
  • Coastal and offshore structures such as ports and offshore wind farms will often need to be built on fine-grained sediments. Geotechnical properties associated with sediment compressibility are key parameters for marine construction designs especially on soft grounds, which involve clay-mineral dominated fines that can consolidate and settle significantly in response to engineered and environmental loads. We conduct liquid limit tests and 1D consolidation tests with fine-grained soils (silica silt, mica, kaolin and bentonite) and biogenic soils (diatom). The pore fluids for the liquid limit tests include deionized water and a series of brines with NaCl salt concentrations of 0.001 m, 0.01 m, 0.1 m, 0.6 m and 2.0 m, and the pore fluids for the consolidation tests deionized water, 0.01 m, 0.6 m, 2 m. The salt concentrations help the liquid limits of kaolin and bentonite decrease, but those of diatom slightly increase. The silica silt and mica show minimal changes in liquid limit due to salt concentrations. Accordingly, compression indices of soils follow the trend of the liquid limit as the liquid limit determined the initial void ratio of the consolidation test. Diatoms are more likely to be broken than clastic sediments during to loading, and diatom-rich sediment is therefore generally more compressible than clastic-rich sediment.

Maximum shear modulus of rigid-soft mixtures subjected to overconsolidation stress history

  • Boyoung Yoon;Hyunwook Choo
    • Geomechanics and Engineering
    • /
    • 제37권5호
    • /
    • pp.443-452
    • /
    • 2024
  • The use of sand-tire chip mixtures in construction industry is a sustainable and environmentally friendly approach that addresses both waste tire disposal and soil improvement needs. However, the addition of tire chip particles to natural soils decreases maximum shear modulus (Gmax), but increases compressibility, which can be potential drawbacks. This study examines the effect of overconsolidation stress history on the maximum shear modulus (Gmax) of rigid-soft mixtures with varying size ratios (SR) and tire chip contents (TC) by measuring the wave velocity through a 1-D compression test during loading and unloading. The results demonstrate that the Gmax of tested mixtures in the normally consolidated state increased with increasing SR and decreasing TC. However, the tested mixtures with a smaller SR exhibited a greater increase in Gmax during unloading because of the active pore-filling behavior of the smaller rubber particles and the consequent increased connectivity between sand particles. The SR-dependent impact of the overconsolidation stress history on Gmax was verified using the ratio between the swelling and compression indices. Most importantly, this study reveals that the excessive settlement and lower Gmax of rigid-soft mixtures can be overcome by introducing an overconsolidated state in sand-tire chip mixtures with low TC.

Numerical Studies of Transient Opposed-Flow Flames using Adaptive Time Integration

  • Im, Hong-Geun
    • Journal of Mechanical Science and Technology
    • /
    • 제14권1호
    • /
    • pp.103-112
    • /
    • 2000
  • Numerical simulations of unsteady opposed-flow flames are performed using an adaptive time integration method designed for differential-algebraic systems. The compressibility effect is considered in deriving the system of equations, such that the numerical difficulties associated with a high-index system are alleviated. The numerical method is implemented for systems with detailed chemical mechanisms and transport properties by utilizing the Chemkin software. Two test simulations are performeds hydrogen/air diffusion flames with an oscillatory strain rate and transient ignition of methane against heated air. Both results show that the rapid transient behavior is successfully captured by the numerical method.

  • PDF

Application of Experimental Design to Optimize Vitamin C-90 Tabletting Performance

  • Chang, Kuei-Tu
    • Journal of Pharmaceutical Investigation
    • /
    • 제24권3호spc1호
    • /
    • pp.67-77
    • /
    • 1994
  • The RMS statistical approach has demonstrated its potential in developing pharmaceutical dosage forms and in improving tabletting performance. Using an optimized formula, the tabletting performances of vitamin C-90 such as compressibility, disintegration time, lubrication and friability are significantly enhanced when compared with the performance of a traditional test formula. More important, this method also enables us to serve our customers better. Any customized modification of a suggested formula or any technical problem related performance etc. can be readily resolved by simple examination of the models.

  • PDF