• Title/Summary/Keyword: compressed sensing

Search Result 155, Processing Time 0.019 seconds

Performance of Image Reconstruction Techniques for Efficient Multimedia Transmission of Multi-Copter (멀티콥터의 효율적 멀티미디어 전송을 위한 이미지 복원 기법의 성능)

  • Hwang, Yu Min;Lee, Sun Yui;Lee, Sang Woon;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.4
    • /
    • pp.104-110
    • /
    • 2014
  • This paper considers two reconstruction schemes of structured-sparse signals, turbo inference and Markov chain Monte Carlo (MCMC) inference, in compressed sensing(CS) technique that is recently getting an important issue for an efficient video wireless transmission system using multi-copter as an unmanned aerial vehicle. Proposed reconstruction algorithms are setting importance on reduction of image data sizes, fast reconstruction speed and errorless reconstruction. As a result of experimentation with twenty kinds of images, we can find turbo reconstruction algorithm based on loopy belief propagation(BP) has more excellent performances than MCMC algorithm based on Gibbs sampling as aspects of average reconstruction computation time, normalized mean squared error(NMSE) values.

An Efficient Model Based on Smoothed ℓ0 Norm for Sparse Signal Reconstruction

  • Li, Yangyang;Sun, Guiling;Li, Zhouzhou;Geng, Tianyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.2028-2041
    • /
    • 2019
  • Compressed sensing (CS) is a new theory. With regard to the sparse signal, an exact reconstruction can be obtained with sufficient CS measurements. Nevertheless, in practical applications, the transform coefficients of many signals usually have weak sparsity and suffer from a variety of noise disturbances. What's worse, most existing classical algorithms are not able to effectively solve this issue. So we proposed an efficient algorithm based on smoothed ${\ell}_0$ norm for sparse signal reconstruction. The direct ${\ell}_0$ norm problem is NP hard, but it is unrealistic to directly solve the ${\ell}_0$ norm problem for the reconstruction of the sparse signal. To select a suitable sequence of smoothed function and solve the ${\ell}_0$ norm optimization problem effectively, we come up with a generalized approximate function model as the objective function to calculate the original signal. The proposed model preserves sharper edges, which is better than any other existing norm based algorithm. As a result, following this model, extensive simulations show that the proposed algorithm is superior to the similar algorithms used for solving the same problem.

DEMO: Deep MR Parametric Mapping with Unsupervised Multi-Tasking Framework

  • Cheng, Jing;Liu, Yuanyuan;Zhu, Yanjie;Liang, Dong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.4
    • /
    • pp.300-312
    • /
    • 2021
  • Compressed sensing (CS) has been investigated in magnetic resonance (MR) parametric mapping to reduce scan time. However, the relatively long reconstruction time restricts its widespread applications in the clinic. Recently, deep learning-based methods have shown great potential in accelerating reconstruction time and improving imaging quality in fast MR imaging, although their adaptation to parametric mapping is still in an early stage. In this paper, we proposed a novel deep learning-based framework DEMO for fast and robust MR parametric mapping. Different from current deep learning-based methods, DEMO trains the network in an unsupervised way, which is more practical given that it is difficult to acquire large fully sampled training data of parametric-weighted images. Specifically, a CS-based loss function is used in DEMO to avoid the necessity of using fully sampled k-space data as the label, thus making it an unsupervised learning approach. DEMO reconstructs parametric weighted images and generates a parametric map simultaneously by unrolling an interaction approach in conventional fast MR parametric mapping, which enables multi-tasking learning. Experimental results showed promising performance of the proposed DEMO framework in quantitative MR T1ρ mapping.

Cooperative Spectrum Sensing Utilizing Sub-Nyquist Sampling in Cognitive Radio Networks (인지 무선 네트워크에서 Sub-Nyquist 샘플링을 활용한 협력 스펙트럼 센싱 기법)

  • Jung, Honggyu;Kim, Kwangyul;Shin, Yoan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.7
    • /
    • pp.1234-1238
    • /
    • 2015
  • We propose cooperative spectrum sensing schemes based on sub-Nyquist sampling. As compressed sensing has recently attracted great attention, sparsity order estimation techniques also has been widely investigated. Thus, assuming that the sparsity order of channel occupancy can be obtained, we mathematically analyze the detection performance of sub-Nyquist sampling schemes according to various sampling rates and cooperative spectrum sensing schemes. Simulation results verify the performance of the proposed schemes.

A Study on the Optimization and Bridge Seismic Response Test of CAFB Using El-centro Seismic Waveforms (El-centro 지진파형을 이용한 CAFB의 최적화 및 교량 지진응답실험에 관한 연구)

  • Heo, Gwang Hee;Lee, Chin Ok;Seo, Sang Gu;Park, Jin Yong;Jeon, Joon Ryong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.67-76
    • /
    • 2020
  • This study aims to optimize the cochlea-inspired artificial filter bank (CAFB) using El-Centro seismic waveforms and test its performance through a shaking table test on a two-span bridge model. In the process of optimizing the CAFB, El-Centro seismic waveforms were used for the purpose of evaluating how they would affect the optimizing process. Next, the optimized CAFB was embedded in the developed wireless-based intelligent data acquisition (IDAQ) system to enable response measurement in real-time. For its performance evaluation to obtain a seismic response in real-time using the optimized CAFB, a two-span bridge (model structures) was installed in a large shaking table, and a seismic response experiment was carried out on it with El-Centro seismic waveforms. The CAFB optimized in this experiment was able to obtain the seismic response in real-time by compressing it using the embedded wireless-based IDAQ system while the obtained compressed signals were compared with the original signal (un-compressed signal). The results of the experiment showed that the compressed signals were superior to the raw signal in response performance, as well as in data compression effect. They also proved that the CAFB was able to compress response signals effectively in real-time even under seismic conditions. Therefore, this paper established that the CAFB optimized by being embedded in the wireless-based IDAQ system was an economical and efficient data compression sensing technology for measuring and monitoring the seismic response in real-time from structures based on the wireless sensor networks (WSNs).

Study on Compressed Sensing of ECG/EMG/EEG Signals for Low Power Wireless Biopotential Signal Monitoring (저전력 무선 생체신호 모니터링을 위한 심전도/근전도/뇌전도의 압축센싱 연구)

  • Lee, Ukjun;Shin, Hyunchol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.3
    • /
    • pp.89-95
    • /
    • 2015
  • Compresses sensing (CS) technique is beneficial for reducing power consumption of biopotential acquisition circuits in wireless healthcare system. This paper investigates the maximum possible compress ratio for various biopotential signal when the CS technique is applied. By using the CS technique, we perform the compression and reconstruction of typical electrocardiogram(ECG), electromyogram(EMG), electroencephalogram(EEG) signals. By comparing the original signal and reconstructed signal, we determines the validity of the CS-based signal compression. Raw-biopotential signal is compressed by using a psuedo-random matrix, and the compressed signal is reconstructed by using the Block Sparse Bayesian Learning(BSBL) algorithm. EMG signal, which is the most sparse biopotential signal, the maximum compress ratio is found to be 10, and the ECG'sl maximum compress ratio is found to be 5. EEG signal, which is the least sparse bioptential signal, the maximum compress ratio is found to be 4. The results of this work is useful and instrumental for the design of wireless biopotential signal monitoring circuits.

Application of Compressive Sensing and Statistical Analysis to Condition Monitoring of Rotating Machine (압축센싱과 통계학적 기법을 적용한 회전체 시스템의 상태진단)

  • Lee, Myung Jun;Jeon, Jun Young;Park, Gyuhae;Kang, To;Han, Soon Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.6_spc
    • /
    • pp.651-659
    • /
    • 2016
  • Condition monitoring (CM) encounters a large data problem due to sensors that measure vibration data with a continuous, and sometimes, high sampling rate. In this study, compressive sensing approaches for condition monitoring are proposed to demonstrate the efficiency in handling a large amount of data and to improve the damage detection capability of the current condition monitoring process. Compressive sensing is a novel sensing/sampling paradigm that takes much fewer samples compared to traditional sampling methods. For the experiments a built-in rotating system was used and all data were compressively sampled to obtain compressed data. Optimal signal features were then selected without the reconstruction process and were used to detect and classify damage. The experimental results show that the proposed method could improve the data processing speed and the accuracy of condition monitoring of rotating systems.

Improvement of Bandwidth Efficiency for High Transmission Capacity of Contents Streaming Data using Compressive Sensing Technique (컨텐츠 스트리밍 데이터의 전송효율 증대를 위한 압축센싱기반 전송채널 대역폭 절감기술 연구)

  • Jung, Eui-Suk;Lee, Yong-Tae;Han, Sang-Kook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2141-2145
    • /
    • 2015
  • A new broadcasting signal transmission, which can save its channel bandwidth using compressive sensing(CS), is proposed in this paper. A new compression technique, which uses two dimensional discrete wavelet transform technique, is proposed to get high sparsity of multimedia image. A L1 minimization technique based on orthogonal matching pursuit is also introduced in order to reconstruct the compressed multimedia image. The CS enables us to save the channel bandwidth of wired and wireless broadcasting signal because various transmitted data are compressed using it. A $256{\times}256$ gray-scale image with compression rato of 20 %, which is sampled by 10 Gs/s, was transmitted to an optical receiver through 20-km optical transmission and then was reconstructed successfully using L1 minimization (bit error rate of $10^{-12}$ at the received optical power of -12.2 dB).

A Reversible Data Hiding Method for AMBTC Compressed Image without Expansion inside Stego Format

  • Hui, Zheng;Zhou, Quan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4443-4462
    • /
    • 2020
  • This paper proposes a new framework of reversible data hiding scheme for absolute moment truncation coding (AMBTC) compressed images. AMBTC-based RDH can be applied to optical remote sensing (ORS) image transmission, which achieves target region preservation and image compression simultaneously. Existing methods can be concluded as two types. In type I schemes, stego codes mimic the original AMBTC format where no file bloat occurs, yet the carried secret data is limited. Type II schemes utilize predication errors to recode quantity levels of AMBTC codes which achieves significant increase in embedding capacity. However, such recoding causes bloat inside stego format, which is not appropriate in mentioned ORS transmission. The proposed method is a novel type I RDH method which prevents bloat inside AMBTC stego codes with significant improvement in embedding capacity. The AMBTC compressed trios are grouped into two categories according to a given threshold. In smooth trio, the modified low quantity level is constructed by concatenating Huffman codes and secret bits. The reversible contrast mapping (RCM) is performed to complex trios for data embedment. Experiments show that the proposed scheme provides highest payload compared with existing type I methods. Meanwhile, no expansion inside stego codes is caused.

A Double-blockchain Architecture for Secure Storage and Transaction on the Internet of Things Networks (IoT 네트워크에서 스토리지와 트랜잭션 보호를 위한 이중 블록체인 구조)

  • Park, jongsoon;Park, chankil
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.17 no.4
    • /
    • pp.43-52
    • /
    • 2021
  • IoT applications are quickly spread in many fields. Blockchain methods(BC), defined as a distributed sharing mechanism, offer excellent support for IoT evolution. The BC provides a secure way for communication between IoT devices. However, the IoT environments are threatened by hacker attacks and malicious intrusions. The IoT applications security are faced with three challenges: intrusions and attacks detection, secure communication, and compressed storage information. This paper proposed a system based on double-blockchain to improve the communication transactions' safety and enhance the information compression method for the stored data. Information security is enhanced by using an Ellipse Curve Cryptography(ECC) considered in a double-blockchain case. The data compression is ensured by the Compressed Sensing(CS) method. The conducted experimentation reveals that the proposed method is more accurate in security and storage performance than previous related works.