• Title/Summary/Keyword: compressed color image

Search Result 28, Processing Time 0.024 seconds

A study on the effect of JPEG recompression with the color image quality (JPEG 재압축이 컬러 이미지 품질에 미치는 영향에 관한 연구)

  • 이성형;조가람;구철희
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.18 no.2
    • /
    • pp.55-68
    • /
    • 2000
  • Joint photographic experts group (JPEG) is a standard still-image compression technique, established by the international organization for standardization (ISO) and international telecommunication standardization sector (ITUT). The standard is intended to be utilized in the various kinds of color still imaging systems as a standard color image coding format. Because JPEG is a lossy compression, the decompressed image pixel values are not the same as the value before compression. Various distortions of JPEG compression and JPEG recompression has been reported in various papers. The Image compressed by JPEG is often recompressed by same type compression method in JPEG. In general, JPEG is a lossy compression and the quality of compressed image is predicted that is varied in according to recompression Q-factor. In this paper, four difference color samples(photo image, gradient image, gradient image, vector drawing image, text image) were compressed in according to various Q-factor, and then the compressed images were recompressed according to various Q-factor once again. As the result, this paper evaluate the variation of image quality and file size in JPEG recompression and recommed the optimum recompression factor.

  • PDF

Lossless Color Image Compression using Inter-channel Correlation (채널 간 상관관계를 이용한 무손실 컬러 이미지 압축)

  • Kim, Se-Yun;Cho, Nam-Ik
    • Journal of Broadcast Engineering
    • /
    • v.16 no.6
    • /
    • pp.962-968
    • /
    • 2011
  • The conventional lossless compression of color images is to apply a compression method to each of color components separately, without considering the channel correlation. There had been several methods that consider the channel correlation, but they were confined to the compression of satellite or aerial images only, and the performance of these algorithms to general photos is not satisfactory. This paper proposes a new lossless color image compression method that exploits the correlation between the color components. Specifically, asymmetric sampling is applied to transform an image into mosaic image and the rest, which are compressed separately. By using the information from the compressed mosaic image, the rest images are predicted for further reducing the information to be compressed. Experimental results show that the proposed method improves the compression performance by 35% over the conventional separate compression methods and 10% over the existing methods that exploit the channel correlation.

Fast Histogram Extraction Scheme for Histogram-based Image Processing (히스토그램 기반 영상 처리를 위한 압축영역에서의 고속 히스토그램 추출 기법)

  • Park, Jun-Hyung;Eom, Min-Young;Choe, Yoon-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.21-23
    • /
    • 2006
  • Due to development of Internet network environments and data compression techniques, the size and amount of multimedia data has greatly increased. They are compressed before transmission or storage. Dealing with these compressed data such as video retrieval or indexing requires the decoding procedure most of the time. In video retrieval and indexing a color histogram is one of the most frequently used tools. We propose a novel scheme for extracting color histograms from images transformed into the compressed domain using $8{times}8$ DCT(Discrete Cosine Transform). In this scheme an averaged version of original image is obtained by filtering DCT coefficients with a filter we destined.

  • PDF

QUALITY IMPROVEMENT OF COMPRESSED COLOR IMAGES USING A PROBABILISTIC APPROACH

  • Takao, Nobuteru;Haraguchi, Shun;Noda, Hideki;Niimi, Michiharu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.520-524
    • /
    • 2009
  • In compressed color images, colors are usually represented by luminance and chrominance (YCbCr) components. Considering characteristics of human vision system, chrominance (CbCr) components are generally represented more coarsely than luminance component. Aiming at possible recovery of chrominance components, we propose a model-based chrominance estimation algorithm where color images are modeled by a Markov random field (MRF). A simple MRF model is here used whose local conditional probability density function (pdf) for a color vector of a pixel is a Gaussian pdf depending on color vectors of its neighboring pixels. Chrominance components of a pixel are estimated by maximizing the conditional pdf given its luminance component and its neighboring color vectors. Experimental results show that the proposed chrominance estimation algorithm is effective for quality improvement of compressed color images such as JPEG and JPEG2000.

  • PDF

A Study on the effect of JPEG recompression with the color image quality (JPEG 재 압축이 컬러 이미지 품질에 미치는 영향에 관한 연구)

  • 이성형;구철회
    • Proceedings of the Korean Printing Society Conference
    • /
    • 2000.04a
    • /
    • pp.17-24
    • /
    • 2000
  • The Joint Photographic Experts Group (JPEG) is a standara still-image compression technique, established by the International for Standardization (ISO) and International Telecommunication Standardization Sector (ITUT). The standard is intended to be utilized in the various kinds of color still imaging systems as a standard color image coding format. Because JPEG is a lossy compression, the decompressed image pixel values are nto the same as values before compression. Image of JPEG compression is often made to JPEG recompression at saving to apply JPEG compression of color image. In general, JPEG is a lossy compression and compression image is predicted to be varied image quality according to recompressed Q-factor. Various distortions of JPEG compression and JPEG recompression has been reported in previous paper. In this paper, we compress four difference color samples (photo image, gradient image, vector drawing image, text image) according to various Q-factor, and then compressed images are recompressed according to various Q-factor once again. As the results, we inspect variation of quality and file size of recompressed color image, and ensure the optimum recompression factor.

Visually Weighted Group-Sparsity Recovery for Compressed Sensing of Color Images with Edge-Preserving Filter (컬러 영상의 압축 센싱을 위한 경계보존 필터 및 시각적 가중치 적용 기반 그룹-희소성 복원)

  • Nguyen, Viet Anh;Trinh, Chien Van;Park, Younghyeon;Jeon, Byeungwoo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.9
    • /
    • pp.106-113
    • /
    • 2015
  • This paper integrates human visual system (HVS) characteristics into compressed sensing recovery of color images. The proposed visual weighting of each color channel in group-sparsity minimization not only pursues sparsity level of image but also reflects HVS characteristics well. Additionally, an edge-preserving filter is embedded in the scheme to remove noise while preserving edges of image so that quality of reconstructed image is further enhanced. Experimental results show that the average PSNR of the proposed method is 0.56 ~ 4dB higher than that of the state-of-the art group-sparsity minimization method. These results prove the excellence of the proposed method in both terms of objective and subjective qualities.

Automatic Detection of Forgery in Cell phone Images using Analysis of CFA Pattern Characteristics in Imaging Sensor (휴대폰의 CFA 패턴특성을 이용한 사진 위변조 탐지)

  • Shim, Jae-Youen;Kim, Seong-Whan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.1118-1121
    • /
    • 2010
  • With the advent of cell phone digital cameras, and sophisticated photo editing software, digital images can be easily manipulated and altered. Although good forgeries may leave no visual clues of having been tampered with, they may, nevertheless, alter the underlying statistics of an image. Most digital camera equipped in cell phones employ a single image sensor in conjunction with a color filter array (CFA), and then interpolates the missing color samples to obtain a three channel color image. This interpolation introduces specific correlations which are likely to be destroyed when tampering with an image. We quantify the specific correlations introduced by CFA interpolation, and describe how these correlations, or lack thereof, can be automatically detected in any portion of an image. We show the efficacy of this approach in revealing traces of digital tampering in lossless and lossy compressed color images interpolated with several different CFA algorithms in test cell phones.

Stereoscopic Video Conversion Based on Image Motion Classification and Key-Motion Detection from a Two-Dimensional Image Sequence (영상 운동 분류와 키 운동 검출에 기반한 2차원 동영상의 입체 변환)

  • Lee, Kwan-Wook;Kim, Je-Dong;Kim, Man-Bae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10B
    • /
    • pp.1086-1092
    • /
    • 2009
  • Stereoscopic conversion has been an important and challenging issue for many 3-D video applications. Usually, there are two different stereoscopic conversion approaches, i.e., image motion-based conversion that uses motion information and object-based conversion that partitions an image into moving or static foreground object(s) and background and then converts the foreground in a stereoscopic object. As well, since the input sequence is MPEG-1/2 compressed video, motion data stored in compressed bitstream are often unreliable and thus the image motion-based conversion might fail. To solve this problem, we present the utilization of key-motion that has the better accuracy of estimated or extracted motion information. To deal with diverse motion types, a transform space produced from motion vectors and color differences is introduced. A key-motion is determined from the transform space and its associated stereoscopic image is generated. Experimental results validate effectiveness and robustness of the proposed method.

Detecting Dissolve Cut for Multidimensional Analysis in an MPEG compressed domain : Using DCT-R of I, P Frames (MPEG의 다차원 분석을 통한 디졸브 구간 검출 : I, P프레임의 DCT-R값을 이용)

  • Heo, Jung;Park, Sang-Sung;Jang, Dong-Sik
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.3
    • /
    • pp.34-40
    • /
    • 2003
  • The paper presents a method to detect dissolve shots of video scene change detections in an MPEG compressed domain. The proposed algorithm uses color-R DCT coefficients of Ⅰ, P-frames for a fast operation and accurate detection and a minimum decoding process in MPEG sequences. The paper presents a method to detect dissolve shot for three-dimensional visualization and analysis of Image in order to recognize easily in computer as a human detects accurately shots of scene change. First, Color-R DCT coefficients for 8*8 units are obtained and the features are summed in a row. Second, Four-step analysis are Performed for differences of the sum in the frame sequences. The experimental results showed that the algorithm has better detection performance, such as precision and recall rate, than the existing method using an average for all DC image by performing four step analysis. The algorithm has the advantage of speed, simplicity and accuracy. In addition. it requires less amount of storage.

  • PDF

A Common Bitmap Block Truncation Coding for Color Images Based on Binary Ant Colony Optimization

  • Li, Zhihong;Jin, Qiang;Chang, Chin-Chen;Liu, Li;Wang, Anhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2326-2345
    • /
    • 2016
  • For the compression of color images, a common bitmap usually is generated to replace the three individual bitmaps that originate from block truncation coding (BTC) of the R, G and B channels. However, common bitmaps generated by some traditional schemes are not the best possible because they do not consider the minimized distortion of the entire color image. In this paper, we propose a near-optimized common bitmap scheme for BTC using Binary Ant Colony Optimization (BACO), producing a BACO-BTC scheme. First, the color image is compressed by the BTC algorithm to get three individual bitmaps, and three pairs of quantization values for the R, G, and B channels. Second, a near-optimized common bitmap is generated with minimized distortion of the entire color image based on the idea of BACO. Finally, the color image is reconstructed easily by the corresponding quantization values according to the common bitmap. The experimental results confirmed that reconstructed image of the proposed scheme has better visual quality and less computational complexity than the referenced schemes.