• 제목/요약/키워드: compressed air injection

검색결과 24건 처리시간 0.026초

2차 유동 분사에 의한 제트 유동의 추력 제어에 관한 연구 (Study of the Thrust Vector Control using a Secondary Flow Injection)

  • 정성재;;김희동;안재문;정동호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.119-122
    • /
    • 2002
  • In general, Liquid Injection Thrust Vector Control(LITVC) is accomplished by injecting a liquid into the supersonic exhaust flow through holes in the wall of the propulsion nozzle. This injection flow field is highly complicated and detailed flow physics associated with the secondary flow injection should be known far the practical design and use of the LITVC system. The present study aims at understanding the LTTVC flow field and obtaining fundamental design parameters for LITVC. The experimentations were performed in a supersonic blow-down wind tunnel. Compressed, dry air was used for both the main exhaust and injection flows but the pressures of these two flows were controlled independently. The location of the injection holes was changed and the pressures of the two streams were also changed between 2.0 and 15.0 bar. The effectiveness of LITVC was discussed in details using the results of the pressure measurements and flow visualizations

  • PDF

다중 분사 인공 초월공동에 대한 실험 연구 (An Experimental Study on Multi-Injected Artificial Supercavitation)

  • 안병권;김기성;정소원;윤현걸
    • 대한조선학회논문집
    • /
    • 제58권1호
    • /
    • pp.24-31
    • /
    • 2021
  • In this study, we present experimental observations of artificial supercavitation generated by the injection of compressed air at multiple locations on the body. Experiments were conducted at a cavitation tunnel equipped with a special facility to remove injected air before returning to the test section. Artificial supercavitation, which is generated at a relatively low speed compared to natural supercavitation, is formed asymmetrically on the axis of the body due to the buoyancy effect. In order to accelerate the development of the supercavity and increase the area covering the body, an experimental device capable of additional injection from the body was designed and its performance was evaluated through the model test. The shapes of the supercavity generated by multi-injections of different combinations according to different flow speeds were analyzed using high-speed shadow images. The results show that multiple injections at suitable locations can effectively increase the length of the supercavity and consequently improve propulsion efficiency.

가스터빈 기화기의 분무 가시화 연구 (Spray Visualization of the Gas Turbine Vaporizer)

  • 조성필;주미리;최성만;이동호
    • 한국분무공학회지
    • /
    • 제24권3호
    • /
    • pp.130-136
    • /
    • 2019
  • Spray visualization of a vaporizer fuel injection system of a micro turbo jet engine was experimentally studied. The fuel heating by combustion was simulated by the high pressure steam generator and combustor inlet air from the centrifugal compressor was simulated by compressed air stored in the high pressure air tank. Spray visualization was performed with single vaporizer, and then six vaporizers which are same number of micro turbojet engine were used. As a results, the spray characteristics of the vaporizer were understood with pressure difference of the combustor inlet air and the fuel supply pressure. Spray angles with three types of vaporizer configuration were measured. In the results, guide vane configuration has a wider spray angle than the straight tube and smooth curve tube with a swirler, so it is expected that the fuel will be effectively distributed inside the combustor flame tube.

직접분사 조건에서 충돌벽면이 미치는 영향에 대한 LPG와 CNG의 분무 및 연소 특성 연구 (A Study on Characteristics of Spray and Combustion of LPG and CNG about the Effect of Impingement-wall under Direct Injection Condition)

  • 정성식;황성일;염정국;김성희
    • 동력기계공학회지
    • /
    • 제19권4호
    • /
    • pp.56-68
    • /
    • 2015
  • Liquefied petroleum gas and compressed natural gas haven been regarded as promising alternative fuels because of no smoke, and they are also clean fuel for spark-ignited engine. In spark-ignited direct-injection engine, direct injection technology can increase engine volumetric efficiency significantly and also reduce necessity of throttle valve. This study designed combustion chamber equipped with visualization system. To improve ignition probability, the study designed to help three types of impingement-walls to form mixture. In doing so, LPG CNG-air mixture could be easily formed after spray-wall impingement and ignition probability increased too. The results of this study could contribute as basic resources of spark-ignited direct injection LPG and CNG engine design and optimization extensively.

열-수리-역학적 연계해석을 이용한 복공식 지하 압축공기에너지 저장공동의 역학적 안정성 평가 (Geomechanical Stability of Underground Lined Rock Caverns (LRC) for Compressed Air Energy Storage (CAES) using Coupled Thermal-Hydraulic-Mechanical Analysis)

  • 김형목;;류동우;신중호;송원경
    • 터널과지하공간
    • /
    • 제21권5호
    • /
    • pp.394-405
    • /
    • 2011
  • 본 연구에서는 복공식 지하 압축공기에너지 저장공동의 역학적 변형 및 누출 거동의 복합거동을 파악할 목적으로 비등온 다상다성분 유체유동 및 역학적 거동의 연계해석이 가능한 TOUGH-FLAC 해석을 실시하였다. 지하압축공기에너지 저장 공동의 초기 및 장기 운영 과정에서 고압 압축공기 인입 입출에 따른 콘크리트 라이닝 내부에 발생하는 응력 양상을 살펴보고 저장공동 내부 압력 및 온도 변화를 파악함으로써 기밀성능을 평가하였다. 최대 저장공동 운영압력 8 MPa 조건에서 콘크리트 라이닝 내부에서는 공기침투압에 의한 유효응력의 감소와 접선방향의 인장응력의 증가에 따라 인장균열이 발생할 수 있음을 확인하였다. 콘크리트 라이닝 내부의 인장균열 발생에 따른 투과특성 증가 모델을 이용한 해석 결과, 저장공동 천정부 및 측벽부 일부에서 인장파괴가 발생하여 이들 영역에서의 투과계수는 초기 $10{\times}10^{-20}m^2$에서 $5.0{\times}10^{-13}m^2$까지 증가하였다. 한편, 콘크리트 라이닝 내부 인장균열 발생 및 투과특성 증가에도 불구하고 저장공동 내부 압축공기 압력은 주변 암반의 기밀성능으로 인해 일정하게 유지되고 공기누출량은 일일주입량의 0.02%에도 못 미쳐 복공식 지하 압축공기에너지 저장공동의 유효성을 확인할 수 있었다.

디젤엔진개량에 의한 천연가스차량전환에 관한 연구 (A Study on Natural Gas Vehicle Conversion by Diesel Engine Improvement)

  • 한영출;오용석;나완용
    • 한국생산제조학회지
    • /
    • 제8권2호
    • /
    • pp.94-94
    • /
    • 1999
  • Natural gas is considered to be on e of the most promising candidates for a clean substitute fuel and a great amount of research on the compressed natural gas(CNG) fueled vehicle has been performed. In this s tudy, we try to understand the property of CNG fuel with using CNG engine experiment. In order to present the direction and application of CNG, we experiment with various operating conditions that is, spark timing, A/F ratio, air quantity and fuel quantity, etc. 11,967 cc engine was used in the experiment and the engine fuel ratio was determined in the way that the performance of dedicated CNG engine is corresponded to that of existing diesel engine. The performance and dedicated CNG engine were measured by changing the fuel injection timing. The dedicated CNG engine was proved to be good in describing the experimental results and according to the actual road test, acceleration and constant speed driving for dedicated CNG engine was better than existing diesel engine.

저부하 라디칼 착화 압축천연가스 엔진의 성능연구 (Study on the Combustion Characteristics of Light-Load RI-CNG Engine)

  • 류우;동용;염정국;정성식
    • 동력기계공학회지
    • /
    • 제15권1호
    • /
    • pp.11-17
    • /
    • 2011
  • 본 연구는 라디칼 착화(Radical Ignition이하 RI) 기술을 적용한 부실직분식 CNG(Compressed Natural Gas) 엔진의 구동특성에 관한 것이다. 실험엔진은 단기통 디젤엔진을 개조하여 사용하였으며, 이는 부실식 디젤엔진처럼 연소실이 주실과 부실로 나누어져 있다. 부실에 분사된 CNG는 스파크플러그로 점화하며, 부실로 부터의 연소가스가 주실 희박 혼합기를 시켜 구동하는 엔진이다. RI 기술은 연소속도를 향상시킬 수 있다. 본 연구는 주로 저부하 RI-CNG 엔진의 성능을 연구하였다. 연료분사기간은 9 ms, 공기과잉률은 1.0, 1.2, 1.4로 하였다. 연료분사시기는 엔진의 배가밸브가 닫히는 ATDC $20^{\circ}CA$ 부터 $120^{\circ}CA$ 사이로, $20^{\circ}CA$ 간격으로 지각시켜 가며 실험하였다. 본 연구는 연료분사시기 및 공기과잉률이 연소최고압력 ($P_{max}$), 연소최고압력시기(${\Theta}_{pmax}$), 도시평균유효압력(IMEP), 사이클 변동계수($COV_{imep}$), 연소속도에 미치는 양향 등을 구하고 분석하였다.

비정렬 격자계에서 균질혼합 모델을 이용한 수중 운동체의 거동에 관한 수치적 연구 (A COMPUTATIONAL STUDY ABOUT BEHAVIOR OF AN UNDERWATER PROJECTILE USING A HOMOGENEOUS MIXTURE MODEL ON UNSTRUCTURED MESHES)

  • 조성민;최재훈;권오준
    • 한국전산유체공학회지
    • /
    • 제21권3호
    • /
    • pp.15-23
    • /
    • 2016
  • In the present study, two phase flows around a projectile vertically launched from an underwater platform have been numerically investigated by using a three dimensional multi-phase RANS flow solver based on pseudo-compressibility and a homogeneous mixture model on unstructured meshes. The relative motion between the platform and projectile was described by six degrees of freedom equations of motion with Euler angles and a chimera technique. The propulsive power of the projectile was modeled as the fluid force acting on the lower surface of the body by the compressed air emitted from the underwater platform. Various flow conditions were considered to analyze the fluid-dynamics motion parameters of the projectile. The water level of platform and the current speed around the projectile were the main parametric variables. The numerical calculations were conducted up to 0.75sec in physical time scale. The dynamics tendency of the projectile was almost identical with respect to the water level variation due to the constant buoyancy term. The moving speed of the projectile along the vertical axis inside the platform decreased when the current speed increased. This is because the inflow from outside of the platform impeded development of the compressed air emitted from the floor surface of the launch platform. As a result, the fluid force acting on the lower surface of the projectile decreased, and injection time of the projectile from the platform was delayed.

고속 어뢰의 인공 초공동 특성에 대한 실험 연구 (Experimental Study on Artificial Supercavitation of the High Speed Torpedo)

  • 안병권;정소원;김지혜;정영래;김선범
    • 한국군사과학기술학회지
    • /
    • 제18권3호
    • /
    • pp.300-308
    • /
    • 2015
  • Recently supercavitating underwater torpedo moving at high speed (over 200 knots) has been interested for their practical advantage of the dramatic drag reduction. Cavitator located in front of the torpedo plays an important role to generate a natural supercavity and control the motion of the object. Supercavity can be created artificially by injection of compressed gas from the rear of the cavitator at a relatively low speed. In this paper, we investigated physical characteristics of artificial supercavities through cavitation tunnel experiments. One of the main focuses of the study was to measure pressure inside the cavity, and examined variation of the gravity effects appearing according to different amount of injected air. It was also found that a stable supercavity could be sustained at injection rates less than that required to form the stable supercavity because of hysteresis effect.

DME와 디젤 단기통 엔진의 연소 및 배출가스 특성에 관한 연구 (A Study on the Combustion and Exhaust Gas Characteristics of Single Cylinder Engine for DME and Diesel)

  • 김현철;강우;김병수;박상훈;정재우;박종호
    • 한국자동차공학회논문집
    • /
    • 제12권6호
    • /
    • pp.80-89
    • /
    • 2004
  • In order to confront the increasing air pollution and the tightening emission restrictions, this research developed a diesel engine using DME, the advanced smoke-free alternative fuel. By numerical analysis, flow field, spray, and combustion phenomenon of the DME engine was presented. Using an experimental method, the configuration of the fuel supply system and operation/power performance was tested with the current plunger pump. Most emission performance, especially smoke performance was significantly improved. The possibility of conversion from the current diesel engine into the DME engine was affirmed in this research. However, it was found that the increase of engine RPM and fuel amount need to be properly adjusted through matching the characteristics of fuel and injector for further improvement.