• 제목/요약/키워드: compounding

검색결과 339건 처리시간 0.027초

Study on Property Change with a Fire Retardant Content in the Manufacture of Polymer Composites for Cable Sheath

  • Li, Xiang Xu;Lee, Sang Bong;Cho, Ur Ryong
    • Elastomers and Composites
    • /
    • 제54권2호
    • /
    • pp.118-122
    • /
    • 2019
  • Four different polymer compounds were manufactured to make cable sheaths for the shipping industry. Two kinds of ethylene vinyl acetate (EVA) as the main matrix polymers and EVA-grafted maleic anhydride (EVA-g-MAH) as the coupling agent were selected for compounding with fire retardant, crosslinking agent, filler, plasticizer, and other additives. The properties of the four compounded materials were investigated with different contents of the fire retardant, silanecoated magnesium dihydroxide (S-MDH). In the rheology evaluation, the $t_{60}$ and ${\Delta}T$ values increased with increasing S-MDH contents. On the other hand, the tensile strength decreased with increasing S-MDH content due to a relative decrease in binder polymers. With increasing S-MDH content, fire resistance increased, but cold resistance showed no obvious enhancement due to the polar effect of vinyl acetate in EVA.

딥러닝 알고리즘 기반 탄산화 진행 예측에서 활성화 함수 적용에 관한 기초적 연구 (A Fundamental Study on the Effect of Activation Function in Predicting Carbonation Progress Using Deep Learning Algorithm)

  • 정도현;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 추계 학술논문 발표대회
    • /
    • pp.60-61
    • /
    • 2019
  • Concrete carbonation is one of the factors that reduce the durability of concrete. In modern times, due to industrialization, the carbon dioxide concentration in the atmosphere is increasing, and the impact of carbonation is increasing. So, it is important to understand the carbonation resistance according to the concrete compounding to secure the concrete durability life. In this study, we want to predict the concrete carbonation velocity coefficient, which is an indicator of the carbonation resistance of concrete, through the deep learning algorithm, and to find the activation function suitable for the prediction of carbonation rate coefficient as a process to determine the learning accuracy through the deep learning algorithm. In the scope of this study, using the ReLU function showed better accuracy than using other activation functions.

  • PDF

Influence of Loading Procedure of Liquid Butadiene Rubber on Properties of Silica-filled Tire Tread Compounds

  • Jinwoo Seo;Woong Kim;Seongguk Bae;Jungsoo Kim
    • Elastomers and Composites
    • /
    • 제57권4호
    • /
    • pp.129-137
    • /
    • 2022
  • Low molecular weight liquid butadiene rubber (LqBR) is a processing aid that can resolve the migration problem of tire tread compounds. Various studies are being conducted to replace the petroleum-based processing oil with LqBR. However, the effect of the loading time of LqBR in the compounding process on silica dispersion and vulcanizate properties is not well known. In this study, we analyzed silica dispersion, vulcanizate properties, and viscoelastic properties of silica-filled tire tread compound according to the processing aid type (TDAE oil, non-functional LqBR) and, silane terminated LqBR) and input timing. In the non-functional LqBR compounds, the 'with TESPT' mixing procedure showed excellent dynamic viscoelastic properties while silane-terminated LqBR compounds showed that the 'after TESPT' mixing procedure was good for 300% modulus and abrasion resistance.

시멘트 종류 변화에 따른 콘크리트의 온도 및 응결시간 비교분석 (Comparative Analysis of Temperature and Setting Time of Concrete According to Types of Cements)

  • 최윤호;김상민;현승용;김종;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 가을 학술논문 발표대회
    • /
    • pp.29-30
    • /
    • 2020
  • In this study, as part of the foundation for advancing the material compounding aspect to reduce hydration heat cracks in the mat foundation on which the mass concrete is constructed, the degree of concrete varieties of cement is used. The setting time was measured and comparative analysis was performed. Results It was confirmed that the concrete using LHC was more effective than the concrete using OPC in reducing the use of SP, the calorific value of the concrete was low, and it was more effective in preventing cracks. It is also terminated after 10 hours and it is determined that the use of LHC can reduce the cracks caused by the heat of hydration of the mat foundation.

  • PDF

생물학적 판넬용 마그네시아-인산칼륨 복합체의 유동 및 압축강도 특성 (Workability and Compressive Strength Properties of Magnesia-Potassium Phosphate Composites for Biological Panel)

  • 최연왕;이재흔;최병걸;오성록
    • 한국산학기술학회논문지
    • /
    • 제18권7호
    • /
    • pp.357-364
    • /
    • 2017
  • 본 논문에서는 생물학적 판넬의 모재로써 마그네시아-인산칼륨 복합체의 품질을 제어하기 위하여 마그네시아-인산칼륨 복합체의 혼합비와 물-결합재비(W/B)에 대한 유동 및 압축강도의 영향을 고찰하고자 하였다. MPPC는 W/B 7수준(30, 35, 40, 45, 50, 55 and 60 vol. %) 및 인산칼륨 및 마그네시아 비율(P:M) 4수준(1;0.5, 1;1.0, 1;2.0 and 1;3.0)으로 제조하였으며, 실험결과, MPPC의 유동 및 압축강도는 P:M비 및W/B에 크게 의존하는 것을 확인할 수 있었다. MPPC의 플로우는 P:M이 증가할수록 반응을 위한 배합수의 부족으로 혼합이 되지 않는 것으로 나타났으며, 이러한 원인은 P의 밀도와 M의 밀도가 크기 때문인 것으로 나타났다. 또한 MPPC의 압축강도는 P:M이 증가함에 따라 강도가 감소하는 경향이 나타났으나 W/B에 따라서는 비례적인 변화가 나타나지 않아 모순된 결과가 나타났다. 이러한 결과는 MPPC의 경우 W/B에 따라 최적의 배합비율이 존재함을 확인할 수 있었다. 본 논문의 이러한 결과를 통하여 생물학적 판넬 설계시 재료적 측면에서 모재 재료의 유동성 및 압축강도에 대한품질 제어를 위한 기반자료로써 활용하고자 한다.

부산지역 일부 제조업 산업장의 기중 5가지 화학물질의 경시적 농도 변화 (Chronological Concentration Change of Five Chemical Substances in Manufacturing Industry of Busan Area)

  • 박준제;선병관;손병철;문덕환
    • 한국산업보건학회지
    • /
    • 제16권1호
    • /
    • pp.68-80
    • /
    • 2006
  • This study aimed to prepare the fundamental data and assess the status and trend of exposure level for 5 chemical substances such as sulfuric acid, hydrogen chloride, ammonia, formaldehyde and phenol in manufacturing industry by type of industry, working process, and size of factory, chronological change. Subjects related to this study consist of 146 factories, 12 industries and 17 working processes located in Busan area from Jan. 1997 to Dec. 2001. 1. All 5 kinds of chemical substances by type of industry, working process were generated in chemical manufacturing industry. There were founded in 8 types of industries and 13 types of working processes for ammonia, which is the highest number of in all 5 chemical substances. 2. In terms of the exposure level for 5 chemical substances by type of industry, working process, geometric mean concentration for sulfuric acid was $0.40mg/m^3$ in manufacture of chemicals and chemical products, $0.30mg/m^3$ in compounding process, for hydrogen chloride was 0.57 ppm in manufacture of basic metal, 0.48 ppm in dyeing process, for ammonia was 1.11 ppm in manufacture of rubber and plastic products, 0.94 ppm in buffing process, for formaldehyde was 0.49 ppm in manufacture of wood and of products of wood and cork, except furniture; manufacture of articles straw and plating materials, 0.53 ppm in mixing process, and for phenol were 0.53 ppm in manufacture of chemical and chemical products, 0.55 ppm in compounding process, respectively. Results for 5 chemical substances by type of industry and working process were significantly higher than those of the others(p<0.05). 3. The exposure level for hydrogen chloride, formaldehyde were significantly increased by size of industry (p<0.01). ammonia was significantly decreased by size of industry (p<0.01). 4. In trend of the concentration difference of five chemical substances by chronology, geometric mean concentration for sulfuric acid was significantly increased (p<0.01), hydrogen chloride and ammonia were significantly decreased by year (p<0.05) and for formaldehyde and phenol were decreased in chronological change. According to the above results 5 chemical substances were founded together in a way mixed in the same places one another and concentrations of chemical substances by industry, working process, size of industry and year appeared markedly. The authors recommend more systemic and effective work environmental management should be conducted in workplaces generating five chemical substances.

Cubic형과 Colloid형 탄산칼슘 합성에서의 입경제어 연구 (Controlling Factors of Particle Size Distribution during Formation of Cubic and Colloidal Calcium Carbonate Compounds)

  • Ahn, Ji-Whan;Park, Chan-Hoon
    • 자원리싸이클링
    • /
    • 제5권3호
    • /
    • pp.65-72
    • /
    • 1996
  • 탄산칼슘과 고분자 재료가 배합되면 서로의 계면에 대한 친화성이 결여되어 분산성이 저하하기 때문에 이를 위해 탄산칼슘을 표면처리를 하지만 이는 분체자신의 표면에너지를 저하시키는 역효과의 가능성도 있다. 따라서 표면처리를 하지 않아도 미세한 1차 입자의 상태로 유지하는 초미립체(입경 0.02~0.09$mu extrm{m}$) 입자의 콜로이드형 탄산칼슘 합성에 대한 기술이 절실히 요구되나 합성시 목적입도가 평균입도 범주에 속하고 또 그 분포가 좁아야 함이 핵심요소기술이 되는데 입경제어에 대한 인자 규명 및 최적 조건의 항구적인 합성조건에 대한 연구가 전혀 수행되지 못한 형편이다. 이에 본 연구에서는 수산화칼슘 현탁액에 탄산가스를 접촉시키는 기-액접촉방식의 CMSMPR(Continuous Mixed Suspension Mixed Product Removal)법을 이용하여 콜로이드형 탄산칼슘 합성을 목적으로 입방형 탄산칼슘과 함께 제어함으로 두 종류의 침강성 탄산캄슘을 최적 합성화 할 수 있었다. 수산화칼슘 현탁액 제조는$ 1100^{\circ}C$에서 수산화칼슘을 2시간 소성을 시켜 제조한 산화칼슘을 증류수에 600rpm으로 30분간 수화시킨 반응현탁액 2ι를 반응온도 $15^{\circ}C$와 반응교반속도 600rpm, 탄산가스 주입속도 1ι/min으로 모든 조건을 고정시키고 현탁액에 대한 산화칼슘의 농도변화만으로 입방형(0.2~0.9$\mu\textrm{m}$)과 콜로이드형($0.02~0.09\mu\textrm{m}$)을 합성하였고 이에 대한 반응현탁액의 농도 최적조건이 각각 5wt%와 2.5wt%임을 확인하였다. 결국 입경제어의 주요 인자가 현탁액의 농도임을 알았고 합성한 탄산칼슘은 Zeta sizer를 통해 측정하여 평균입도가 입방형은 223.4nm(0.223$\mu\textrm{m}$)와 콜로이드형 93.6nm(0.093$\mu\textrm{m}$)임을 확인하여 $H_2O$ 반응계에서 안정적인 균일입도제어를 할 수 있었다.

  • PDF

MODFLOW or FEFLOW: A Case Study of Groundwater Model Selection for the Upper Waikato Catchment, New Zealand

  • Weir, Julian;Moore, Dr Catherine;Hadfield, John
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2011년도 학술발표회
    • /
    • pp.14-14
    • /
    • 2011
  • Groundwater in the Waikatoregion is a valuable resource for agriculture, water supply, forestry and industries. The 434,000 ha study area comprises the upper Waikato River catchment from the outflow of Lake Taupo (New Zealand's largest lake) through to Lake Karapiro (a man-made hydro lake with high recreational value) (Figure 1). Water quality in the area is naturally high. However, there are indications that this quality is deteriorating as a result of land use intensification and deforestation. Compounding this concern for decision makers is the lag time between land use changes and the realisation of effects on groundwater and surface water quality. It is expected that the effects of land use changes have not yet fully manifested, and additional intensification may take decadesto fully develop, further compounding the deterioration. Consequently, Environment Waikato (EW) have proposed a programme of work to develop a groundwater model to assist managing water quality and appropriate policy development within the catchment. One of the most important and critical decisions of any modelling exercise is the choice of the modelling platform to be used. It must not inhibit future decision making and scenario exploration and needs to allow as accurate representation of reality as feasible. With this in mind, EW requested that two modelling platforms, MODFLOW/MT3DMS and FEFLOW, be assessed for their ability to deliver the long-term modelling objectives for this project. The two platforms were compared alongside various selection criteria including complexity of model set-up and development, computational burden, ease and accuracy of representing surface water-groundwater interactions, precision in predictive scenarios and ease with which the model input and output files could be interrogated. This latter criteria is essential for the thorough assessment of predictive uncertainty with third-party software, such as PEST. This paper will focus on the attributes of each modelling platform and the comparison of the two approaches against the key criteria in the selection process. Primarily due to the ease of handling and developing input files and interrogating output files, MODFLOW/MT3DMS was selected as the preferred platform. Other advantages and disadvantages of the two modelling platforms were somewhat balanced. A preliminary regional groundwater numerical model of the study area was subsequently constructed. The model simulates steady state groundwater and surface water flows using MODFLOW and transient contaminant transport with MT3DMS, focussing on nitrate nitrogen (as a conservative solute). Geological information for this project was provided by GNS Science. Professional peer review was completed by Dr. Vince Bidwell (of Lincoln Environmental).

  • PDF

폴리프로필렌/점토 나노복합체의 하이브리드 나노구조에 따른 기계적 성질 및 결정화거동 변화 (Hybrid Nanostructure-dependent Mechanical Properties and Crystallization Behaviors of Polypropylene/Clay Nanocomposites)

  • 최기운;이한섭;강복춘;양회창
    • 폴리머
    • /
    • 제34권4호
    • /
    • pp.294-299
    • /
    • 2010
  • 아미노실란 처리된 점토를 제조하여, 이를 분자량이 서로 다른 폴리프로필렌(140 kg/mol과 410 kg/mol) 과 상용화제인 무수말레인산 그래프트 폴리프로필렌(50 kg/mol)과 함께 $170^{\circ}C$$190^{\circ}C$에서 용융혼합법으로 각각의 폴리프로필렌/점토 나노복합체를 제조하였다. 무수말레인산 그래프트 폴리프로필렌과 용융혼합과정에서 낮은 분자량의 폴리프로필렌은 점토 층 사이로 쉽게 침투하여 층간 거리를 58 $\AA$ 이상으로 증가시키지만, 첨가된 점토는 60~80 nm 두께의 응집체로 나노복합체 내에 분산상을 이룬다. 이와 달리 높은 분자량의 폴리프로필렌 기반 나노복합체에서는 점토는 27 $\AA$로 낮은 박리 정도를 보이며, 전반적으로 고른 점토 분산상을 형성한다. 분자 량 및 용융혼합공정의 차이에 따른 폴리프로필렌/점토 나노복합체의 미세 모폴로지 차이로 기계적 물성 및 결정 화거동이 관찰되었으며, 분자량 410(kg/mol)인 폴리프로필렌은 개질된 점토를 1~3 wt% 첨가함으로써 순수 폴 리프로필렌의 연성특성을 유지하면서 향상된 인장강도와 탄성률을 보였다.

Structural and Dielectric Studies of LLDPE/O-MMT Nanocomposites

  • Zazoum, Bouchaib;David, Eric;Ngo, Anh Dung
    • Transactions on Electrical and Electronic Materials
    • /
    • 제15권5호
    • /
    • pp.235-240
    • /
    • 2014
  • Nanocomposites made of linear low density polyethylene (LLDPE) and organo-modified montmorillonite (O-MMT) were processed by melt compounding from a commercially available premixed LLDPE/nanoclay masterbatch, at different nanoclay loadings, by co-rotating twin-screw extruder. The morphological and dielectric properties of LLDPE/O-MMT nanocomposites were investigated to understand the structure-dielectric properties relationship in the nanocomposites. The microstructures of the materials were characterized by wide angle X-ray diffraction (WAXD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM). Initial findings by FTIR spectroscopy characterization indicated the absence of any chemical interaction between LLDPE and nanoclay during the extrusion process, while DSC showed that a 1% wt loading of nanoclay particles increased the degree of crystallinity of the nanocomposites samples. On the other hand, XRD, SEM, TEM and AFM indicated that nanoclay layers were intercalated or exfoliated in the LLDPE matrix. A correlation between the structure and dielectric properties of LLDPE/O-MMT nanocomposites was found and discussed.