• Title/Summary/Keyword: compounding

Search Result 342, Processing Time 0.034 seconds

Study on Manufacture and Properties of Polymer Compounds for Cable Sheath (전선피복용 고분자 컴파운드의 제조 및 물성 연구)

  • Li, Xiangxu;Lee, Sang Bong;Cho, Ur Ryong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.42-47
    • /
    • 2019
  • The four different polymer compounds were manufactured to make cable sheath for ship industry. Two kinds of ethylene-vinyl acetate (EVA) were selected as main matrix polymers for compounding with fire retardant, crosslinking agent, filler, plasticizer, and other additives. The properties of the four compounded materials were investigated with the contents of fire retardant, silane coated aluminum hydroxide (S-ATH). Rheology, Mooney viscosity, and tensile strength increased with S-ATH contents by reinforcing effect. With increasing fire retardant amount, fire resistance increased, but cold resistance didn't show an obvious enhancement due to polar effect of vinyl acetate in EVA.

Study on Property Change with a Fire Retardant Content in the Manufacture of Polymer Composites for Cable Sheath

  • Li, Xiang Xu;Lee, Sang Bong;Cho, Ur Ryong
    • Elastomers and Composites
    • /
    • v.54 no.2
    • /
    • pp.118-122
    • /
    • 2019
  • Four different polymer compounds were manufactured to make cable sheaths for the shipping industry. Two kinds of ethylene vinyl acetate (EVA) as the main matrix polymers and EVA-grafted maleic anhydride (EVA-g-MAH) as the coupling agent were selected for compounding with fire retardant, crosslinking agent, filler, plasticizer, and other additives. The properties of the four compounded materials were investigated with different contents of the fire retardant, silanecoated magnesium dihydroxide (S-MDH). In the rheology evaluation, the $t_{60}$ and ${\Delta}T$ values increased with increasing S-MDH contents. On the other hand, the tensile strength decreased with increasing S-MDH content due to a relative decrease in binder polymers. With increasing S-MDH content, fire resistance increased, but cold resistance showed no obvious enhancement due to the polar effect of vinyl acetate in EVA.

A Fundamental Study on the Effect of Activation Function in Predicting Carbonation Progress Using Deep Learning Algorithm (딥러닝 알고리즘 기반 탄산화 진행 예측에서 활성화 함수 적용에 관한 기초적 연구)

  • Jung, Do-Hyun;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.60-61
    • /
    • 2019
  • Concrete carbonation is one of the factors that reduce the durability of concrete. In modern times, due to industrialization, the carbon dioxide concentration in the atmosphere is increasing, and the impact of carbonation is increasing. So, it is important to understand the carbonation resistance according to the concrete compounding to secure the concrete durability life. In this study, we want to predict the concrete carbonation velocity coefficient, which is an indicator of the carbonation resistance of concrete, through the deep learning algorithm, and to find the activation function suitable for the prediction of carbonation rate coefficient as a process to determine the learning accuracy through the deep learning algorithm. In the scope of this study, using the ReLU function showed better accuracy than using other activation functions.

  • PDF

Influence of Loading Procedure of Liquid Butadiene Rubber on Properties of Silica-filled Tire Tread Compounds

  • Jinwoo Seo;Woong Kim;Seongguk Bae;Jungsoo Kim
    • Elastomers and Composites
    • /
    • v.57 no.4
    • /
    • pp.129-137
    • /
    • 2022
  • Low molecular weight liquid butadiene rubber (LqBR) is a processing aid that can resolve the migration problem of tire tread compounds. Various studies are being conducted to replace the petroleum-based processing oil with LqBR. However, the effect of the loading time of LqBR in the compounding process on silica dispersion and vulcanizate properties is not well known. In this study, we analyzed silica dispersion, vulcanizate properties, and viscoelastic properties of silica-filled tire tread compound according to the processing aid type (TDAE oil, non-functional LqBR) and, silane terminated LqBR) and input timing. In the non-functional LqBR compounds, the 'with TESPT' mixing procedure showed excellent dynamic viscoelastic properties while silane-terminated LqBR compounds showed that the 'after TESPT' mixing procedure was good for 300% modulus and abrasion resistance.

Comparative Analysis of Temperature and Setting Time of Concrete According to Types of Cements (시멘트 종류 변화에 따른 콘크리트의 온도 및 응결시간 비교분석)

  • Choi, Yoon-Ho;Kim, Sang-Min;Hyun, Seung-Yong;Kim, Jong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.29-30
    • /
    • 2020
  • In this study, as part of the foundation for advancing the material compounding aspect to reduce hydration heat cracks in the mat foundation on which the mass concrete is constructed, the degree of concrete varieties of cement is used. The setting time was measured and comparative analysis was performed. Results It was confirmed that the concrete using LHC was more effective than the concrete using OPC in reducing the use of SP, the calorific value of the concrete was low, and it was more effective in preventing cracks. It is also terminated after 10 hours and it is determined that the use of LHC can reduce the cracks caused by the heat of hydration of the mat foundation.

  • PDF

Does the nuclear engineering field perform worse in utilizing women? Evidence from South Korea

  • Jihye Kam;Sungyeol Choi;Soohyung Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2676-2682
    • /
    • 2024
  • Despite its remarkable socioeconomic development, South Korea underperforms in terms of female labor force participation and women in leadership positions. As women appear to avoid nuclear engineering, we aim to evaluate its relative performance in attracting women to its labor force compared to other college majors. Using college-major level information from 2000, we test whether the female faculty share in nuclear engineering is lower than its counterparts. Although nuclear engineering has one of the lowest female faculty shares, its share exceeds that of agricultural science, business and economics, chemical engineering, chemistry, civil engineering, and industrial engineering once we properly control for gender composition among students and other compounding factors. In other words, once female students major in nuclear engineering, they are less likely to leave their fields compared to their counterparts in other disciplines. This result implies that if the nuclear engineering field aims to attract more women to its workforce, it is important to target them from the early stage of their careers.

Workability and Compressive Strength Properties of Magnesia-Potassium Phosphate Composites for Biological Panel (생물학적 판넬용 마그네시아-인산칼륨 복합체의 유동 및 압축강도 특성)

  • Choi, Yung-Wang;Lee, Jae-Heun;Choi, Byung-Keol;Oh, Sung-Rok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.357-364
    • /
    • 2017
  • In this paper, we investigated the influence of flow and compressive strength on the mixing ratio and water-to-binder (W/B) ratio of magnesia - potassium phosphate composites for controlling the quality of the Magnesia-Potassium Phosphate Composites(Magnesia-Potassium Phosphate Composites, MPPC) as a matrix material for biological panels. MPPC was produced at 7 W/B ratios (30, 35, 40, 45, 50, 55 and 60 vol.%) and 4 P:M ratios (1:0.5, 1:1.0, 1:2.0 and 1:3.0). The experiment results confirmed that the flow and compressive strength of MPPC depend strongly on both P:M and W/B ratios. The flow of MPPC showed that as P: M was increased, the mixing did not occur due to the shortage of the compounding amount for the reaction, because of the large density difference between P and M. The compressive strength of MPPC showed a tendency to decrease with increasing P:Mratio but there was a contradictory result with no proportional change according to W/B ratio. These results indicate that the optimum compounding ratio exists for MPPC according to W/B ratio. These results will be used as the basis data for quality control of the fluidity and compressive strength of matrix materials in terms of material in biological panel design.

Chronological Concentration Change of Five Chemical Substances in Manufacturing Industry of Busan Area (부산지역 일부 제조업 산업장의 기중 5가지 화학물질의 경시적 농도 변화)

  • Park, Joon Jae;Sun, Byong Gwan;Son, Byung Chul;Moon, Deog Hwan
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.16 no.1
    • /
    • pp.68-80
    • /
    • 2006
  • This study aimed to prepare the fundamental data and assess the status and trend of exposure level for 5 chemical substances such as sulfuric acid, hydrogen chloride, ammonia, formaldehyde and phenol in manufacturing industry by type of industry, working process, and size of factory, chronological change. Subjects related to this study consist of 146 factories, 12 industries and 17 working processes located in Busan area from Jan. 1997 to Dec. 2001. 1. All 5 kinds of chemical substances by type of industry, working process were generated in chemical manufacturing industry. There were founded in 8 types of industries and 13 types of working processes for ammonia, which is the highest number of in all 5 chemical substances. 2. In terms of the exposure level for 5 chemical substances by type of industry, working process, geometric mean concentration for sulfuric acid was $0.40mg/m^3$ in manufacture of chemicals and chemical products, $0.30mg/m^3$ in compounding process, for hydrogen chloride was 0.57 ppm in manufacture of basic metal, 0.48 ppm in dyeing process, for ammonia was 1.11 ppm in manufacture of rubber and plastic products, 0.94 ppm in buffing process, for formaldehyde was 0.49 ppm in manufacture of wood and of products of wood and cork, except furniture; manufacture of articles straw and plating materials, 0.53 ppm in mixing process, and for phenol were 0.53 ppm in manufacture of chemical and chemical products, 0.55 ppm in compounding process, respectively. Results for 5 chemical substances by type of industry and working process were significantly higher than those of the others(p<0.05). 3. The exposure level for hydrogen chloride, formaldehyde were significantly increased by size of industry (p<0.01). ammonia was significantly decreased by size of industry (p<0.01). 4. In trend of the concentration difference of five chemical substances by chronology, geometric mean concentration for sulfuric acid was significantly increased (p<0.01), hydrogen chloride and ammonia were significantly decreased by year (p<0.05) and for formaldehyde and phenol were decreased in chronological change. According to the above results 5 chemical substances were founded together in a way mixed in the same places one another and concentrations of chemical substances by industry, working process, size of industry and year appeared markedly. The authors recommend more systemic and effective work environmental management should be conducted in workplaces generating five chemical substances.

Controlling Factors of Particle Size Distribution during Formation of Cubic and Colloidal Calcium Carbonate Compounds (Cubic형과 Colloid형 탄산칼슘 합성에서의 입경제어 연구)

  • Ahn, Ji-Whan;Park, Chan-Hoon
    • Resources Recycling
    • /
    • v.5 no.3
    • /
    • pp.65-72
    • /
    • 1996
  • Colloidal calcium wrbonate(diametcr 0.02-0 09 m~wja s developed to maintain the mamenl of pnriide formatio~>w ~lhoutsurlace trealment. The control factors of particle size and optimum condiliuna for compound fam*tition has not bccn studiedyet. This shldy war aimed at developing a method fur compounding colloidal calcium carbonfcte to cnl~hol cubic calciumcarbonate, and then compounding the b-o types oI precipitated calcium wrbonatc under optimum wndilrans Calc~umhydroxide was calcinated at 1, lWC far two hours, md then hydrated for 30 minutes at t i i O rprn and ambiznt temperahlle.Two-liter suspension was subjected to the contact with carbon dioxide at l5"C, 600 ipxn and C0= injection in the rate of 1 Umin Two types of dcium carbonate(cuhic calcium carbonatc(0 24.9 pm) md collnidd calcium mhnnate (0.02-0 09 pm))were compounded by "wing the concentrations of calcium oxide and ihe suspension were compounded. It was found that theoptimum concentrations of each suspensions were 5 wt % and 2.5 \I*.% respectively. ' h c key control factor af thc parlicle slzcdislribution was the concenkation al the suspension. The size of compounded particles was measured by a Zcla S k r 'fieaverage particle size of the cubic calcium carbonate aas 223.4 nm(0.223 pm), and that of thc colloidal a~lciumc arbonate was93.6 nm (0.093 km). Ihe particle sizc was evenly cantlolled on a stdblc basis in an H, O reaction system.asis in an H, O reaction system.

  • PDF

MODFLOW or FEFLOW: A Case Study of Groundwater Model Selection for the Upper Waikato Catchment, New Zealand

  • Weir, Julian;Moore, Dr Catherine;Hadfield, John
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.14-14
    • /
    • 2011
  • Groundwater in the Waikatoregion is a valuable resource for agriculture, water supply, forestry and industries. The 434,000 ha study area comprises the upper Waikato River catchment from the outflow of Lake Taupo (New Zealand's largest lake) through to Lake Karapiro (a man-made hydro lake with high recreational value) (Figure 1). Water quality in the area is naturally high. However, there are indications that this quality is deteriorating as a result of land use intensification and deforestation. Compounding this concern for decision makers is the lag time between land use changes and the realisation of effects on groundwater and surface water quality. It is expected that the effects of land use changes have not yet fully manifested, and additional intensification may take decadesto fully develop, further compounding the deterioration. Consequently, Environment Waikato (EW) have proposed a programme of work to develop a groundwater model to assist managing water quality and appropriate policy development within the catchment. One of the most important and critical decisions of any modelling exercise is the choice of the modelling platform to be used. It must not inhibit future decision making and scenario exploration and needs to allow as accurate representation of reality as feasible. With this in mind, EW requested that two modelling platforms, MODFLOW/MT3DMS and FEFLOW, be assessed for their ability to deliver the long-term modelling objectives for this project. The two platforms were compared alongside various selection criteria including complexity of model set-up and development, computational burden, ease and accuracy of representing surface water-groundwater interactions, precision in predictive scenarios and ease with which the model input and output files could be interrogated. This latter criteria is essential for the thorough assessment of predictive uncertainty with third-party software, such as PEST. This paper will focus on the attributes of each modelling platform and the comparison of the two approaches against the key criteria in the selection process. Primarily due to the ease of handling and developing input files and interrogating output files, MODFLOW/MT3DMS was selected as the preferred platform. Other advantages and disadvantages of the two modelling platforms were somewhat balanced. A preliminary regional groundwater numerical model of the study area was subsequently constructed. The model simulates steady state groundwater and surface water flows using MODFLOW and transient contaminant transport with MT3DMS, focussing on nitrate nitrogen (as a conservative solute). Geological information for this project was provided by GNS Science. Professional peer review was completed by Dr. Vince Bidwell (of Lincoln Environmental).

  • PDF