• Title/Summary/Keyword: compound semiconductor

Search Result 278, Processing Time 0.027 seconds

Convenient Aluminizing Process of Steel by Using Al-Ti Mixed Powder Slurry (Al-Ti 혼합 분말 슬러리를 이용한 강의 알루미나이징처리 방법)

  • Lee, Young-Ki;Kim, Jung-Yeul;Lee, You-Kee
    • Korean Journal of Materials Research
    • /
    • v.19 no.4
    • /
    • pp.207-211
    • /
    • 2009
  • In this study, we attempted to develop a convenient aluminizing process, using Al-Ti mixed slurry as an aluminum source, to control the Al content of the aluminized layer as a result of a one-step process and can be widely adopted for coating complex-shaped components. The aluminizing process was carried out by the heat treatment on disc and rod shaped S45C steel substrates with Al-Ti mixed slurries that were composed of various mixed ratios (wt%) of Al and Ti powders. The surface of the resultant aluminized layer was relatively smooth with no obvious cracks. The aluminized layers mainly contain an Fe-Al compound as the bulk phase. However, the Al concentration and the thickness of the aluminized layer gradually decrease as the Ti proportion among Al-Ti mixed slurries increases. It has also been shown that the Al-Ti compound layer, which formed on the substrate during heat treatment, easily separates from the substrate. In addition, the incorporation of Ti into the substrate surface during heat treatment was not observed.

Space Charge Effects at Doped Ⅲ-Ⅴ Compound Semiconductor Interfaces (Doping된 Ⅲ-Ⅴ族 化合物 半導體 界面에서 空間電荷效果)

  • Chun, Jang-Ho
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.2
    • /
    • pp.93-97
    • /
    • 1990
  • Interfacil charge approximations and structures at doped semiconductor interfaces were proposed. Rectifying phenomena at the III-V compound semiconductor (p-GaP, p-InP, n-GaAs)/$CsNO_3$ aqueous electrolyte interfaces were qualitatively analyzed in terms of their cyclic current-voltage characteristics. The current-voltage characteristic curves, the ion adsorption and potential barrier processes at the semiconductor interfaces were verified using continuous cyclic voltammetric methods. The pn or np junction structures and the related rectifying types at the doped semi-condudtor-electrolyte inferfaces are determined by the space charges.

  • PDF

III-V Tandem, CuInGa(S,Se)2, and Cu2ZnSn(S,Se)4 Compound Semiconductor Thin Film Solar Cells (3-5족 적층형과 CuInGa(S,Se)2 및 Cu2ZnSn(S,Se)4 화합물반도체 박막태양전지)

  • Jeong, Yonkil;Park, Dong-Won;Lee, Jae Kwang;Lee, Jaeyoung
    • Applied Chemistry for Engineering
    • /
    • v.26 no.5
    • /
    • pp.526-532
    • /
    • 2015
  • Solar cells with other alternative energies are being importantly recognized related with post-2020 climate change regime formation. In a point of view of materials, solar cells are classified to organic and inorganic solar cells which can provide a plant-scale electricity. In particular, recent studies about compound semiconductor solar cells, such as III-V tandem solar cells, chalcopyrite-series CIGSSe solar cells, and kesterite-series CZTSSe solar cells were rapidly accelerated. In this report, we introduce a research trend and technical issues for the compound semiconductor solar cells.

Electrochemical Formation of III-V Compound Semiconductor InSb (III-V 화합물 반도체 InSb의 전기화학적 제조)

  • Lee, Jeong-Oh;Lee, Jong-Wook;Lee, Kwan-Hyi;Jeung, Won-Young;Lee, Jong-Yup
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.3
    • /
    • pp.135-138
    • /
    • 2005
  • We investigated the electrochemical formation of a stoichiometric III-V compound semiconductor of InSb from an aqueous citric solution. Under an? optimized electrochemical condition, not like other research results, the electrodeposited InSb are satisfied exactly with the stoichiometry. Furthermore it retains the inherent characteristics of III-V compound semiconductor, InSb without heat treatment. EPMA, XPS and XRD were employed for confirmation of its composition/stoichiometry, chemical state, and crystallographic orientation, respectively.

Designed and Performance Analysis of High Efficiency Concentrated Photovoltaic System using III-V Compound Semiconductor (III-V 화합물 반도체를 이용한 고효율 집광형 태양광 발전시스템 설계 및 성능분석)

  • Ko, Jae-Hong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.9
    • /
    • pp.33-39
    • /
    • 2012
  • For photovoltaic power generation need certainly decreasing module's price and increasing promote efficiency technology. Almost of solar panel is on the decrease energy efficiency since 2,000. like silicone(Si) solar panel, thin film solar panel and etc. Silicone(Si) solar panel was best efficiency in 1999. It's 24%. But after that time, It didn't pass limit of energy efficiency. That's why, nowadays being issued that using III-V compound semiconductor to high efficiency of concentrating photovoltaic system for making an alternative proposal. In Korea, making researches in allied technology with III-V compound semiconductor solar panel, condenser technology, and solar tracker. but feasibility study for concentrating photovoltaic power generation hasn't progressed yet. This thesis made a plan about CPV(Concentrating Photovoltaic)system and CPV has a higher energy efficiency than PV(Photovoltaic)system in fine climate conditions from comparing CPV with using silicone(Si) solar panel to PV's efficiency test result.

The study of characteristic III-V compound semiconductor by He-Ne laser (III-V 화합물반도체에서의 He-Ne Laser를 활용한 광 특성 연구)

  • Yu, Jae-Yong;Choi, K.S.;Choi, Son Don
    • Laser Solutions
    • /
    • v.16 no.1
    • /
    • pp.1-4
    • /
    • 2013
  • The optical properties of III-V compound semiconductor structure was investgated by photoreflectance (PR). The results show two signals at 1.42 and 1.73eV. These are attributed to the bandgap energy of GaAs, AlGaAs, respectively. Also, AlGaAs region showed weak signal. This signal is attributed to carbon or si defect.

  • PDF

Ferromagnic Transitition Temperature of Diluted Magnetic III-V Based Semiconductor (III-V 화합물 자성 반도체의 강자성체 천이온도에 관한 연구)

  • Lee, Hwa-Yong;Kim, Song-Gang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.143-147
    • /
    • 2001
  • Ferromagnetism in manganese compound semiconductors open prospects for tailoring magnetic and spin-related phenomena in semiconductors with a precision specific to III-V compounds. Also it addresses a question about the origin of the magnetic interactions that lead to a Curie temperature(Tc) as high as 110 K for a manganese concentration of just 5%. Zener's model of ferromagnetism, originally suggested for transition metals in 1950, can explain Tc of $Ga_{1-x}Mn_x$ As and that of its IT-VI counterpart $Zn_{1-x}Mn_x$ Te and is used to predict materials with Tc exceeding room temperature, an important step toward semiconductor electronics that use both charge and spin. In this article, we present not only the experimental result but calculated Curie temperature by RKKY interaction. The problem in making III-V semiconductor has been the low solubility of magnetic elements, such as manganese, in the compound, since the magnetic effects are roughly proportional to the concentration of the magnetic ions. Low solubility of magnetic elements was overcome by low-temperature nonequilibrium MBE{molecular beam epitaxy) growth, and ferromagnetic (Ga,Mn)As was realized. Magnetotransport measurements revealed that the magnetic transition temperature can be as high as 110 K for a small manganese concentration.

  • PDF