• Title/Summary/Keyword: compound matrix

Search Result 273, Processing Time 0.03 seconds

Study on Property Modification with Fire Retardant Content in the Manufacture of Compounds for Cable Sheath (전선피복용 컴파운드의 제조에서 난연제의 첨가량에 따른 물성 변화 연구)

  • Li, Xiangxu;Lee, Sang Bong;Cho, Ur Ryong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.3
    • /
    • pp.47-51
    • /
    • 2019
  • The three different polymer compounds were manufactured with the three different fire retardant (silane coated magnesium dihydroxide) contents, 180, 200, 220 phr, for making cable sheath for ship industry. In the research, ethylene-vinylacetate, polyethylene as matrix polymers and ethylene-vinylacetate grafted maleic anhydride as coupling agent were selected for compounding with fire retardant, closslinking agent, plasticizer, and other additives. In the evaluation. ΔT, Mooney viscosity, and tensile strength increased with the content of fire retardant. But it was found that too much fire retardant damaged aging resistance and cold resistance of the polymer compound.

The crystal structure of pirprofen$(C_{3},\; H_{14},\; ClNO_2$), a non-steroidal antiinflammmatory agent

  • Kim, Yang-Bae;Park, Il-Yeong
    • Archives of Pharmacal Research
    • /
    • v.19 no.1
    • /
    • pp.71-73
    • /
    • 1996
  • The molecular structure of pirprofen, 3-chloro-4-(2,5-dihydro-1H-pyrrol-1-yl)-.alpha.-methyl-benzeneacetic acid, was determined by single crystal X-ray diffraction analysis. The compound was recrystallized from a mixture of chloroform and toluene in triclinic, space group P over $\bar1,\; with\; a=4.577(1),\; b=11.213(2),\; C=12.485(2){\AA},\alpa.=107.39(1),\;\beta=97.79(1),\;\gamma=92.03(2),\; and Z=2$ The calculated density is $1.384 g/cm^3$. The structure was solved by the direct method and refined by full matrix least-squares procedure to the final R value of 0.034 for 1681 independent reflections. The non-aromatic dihydropyrrol group is found to be coplanar to the central aromatic ring. The molecules are dimerized through the intermolecular hydrogen bonds at the carboxyl group in the crystal.

  • PDF

Preparation of Au fine particle dispersed $TiO_2$ film by sol-gel and photoreduction process

  • Hyun, Buh-Sng;Kim, Byeong-Il;Kang, Won-Ho
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.09a
    • /
    • pp.103-111
    • /
    • 1998
  • Au fine particle dispersed TiO2 film was prepared on silica glass substrate by sol-gel dip and firing process. The films were fabricated from the system of titanium tetraisoproxie-EtOh-HCl_H2O-hydrogen tetrachloroaurate(III) tetrahydrate. The conditions for the formation of the clear solution and dissolving high concentration of Au compound were examined. And a photoreduction process was adopted to control the size of gold metal particles. Phase evolution of matrix TiO2 and variation of Au particle with UV irradiation were investigated by XRDA, SEM, TEM and UV-visible spectrophotometer. And the effect of CPCl(Cetylpyridinium chloride monohydrate) as a dispersion agent was evaluated.

  • PDF

The Crystal Structure of Tolfenamic Acid $(C_{14}H_{12}ClNO_2)$, an Antiinflammatory Fenamate

  • Kim, Yang-Bae;Chung, Uoo-Tae;Park, Il-Yeong
    • Archives of Pharmacal Research
    • /
    • v.19 no.2
    • /
    • pp.160-162
    • /
    • 1996
  • The structural analysis of tolfenamic acid, 2-[(3-chloro-2-methylphenyl)-amino]benzoic acid, was performed by single crystal X-ray diffraction technique. The compound was recrystallized from a mixture of ether and toluene in triclinic, space group $P2_1/c, \;with\; \partial=3.914(1), \; b=22.\; 020(2), \; c=14.271(1)\;{\AA}, \beta.=94.68(1)^{\circ}, $ and Z=4. The calculated density is $1.418 g/cm^3$. The structure was solved by the direct method and refined by full matrix least-squares procedure to the final R value of 0.039 for 1773 independent reflections. In the molecule, carboxyl group at the anthranilic acid is coplanar to the phenyl ring. The dihedral angle between the two aromatic rings of the molecule is $44.2^{\circ}$ The molecules are dirnerized through the intermolecular hydrogen bonds at the carboxyl group in the crystal.

  • PDF

Phase Changes of Mechanically Alloyed TiNi Powders by Heat-treatment and Microstructural Properties in the Al/TiNi Sintered Materials (기계적합금화시킨 TiNi 분말의 열처리조건에 따른 상변화 및 Al/TiNi소결체 내에서의 미세조직 특성)

  • 차성수
    • Journal of Powder Materials
    • /
    • v.3 no.3
    • /
    • pp.174-180
    • /
    • 1996
  • Microstructure and phase transformation of mechanically alloyed TiNi powders added to aluminium matrix for enhancing the damping properties were studied. Four compositions between 48.5 and 51.5 at% Ti intermetallic compounds were selected to control the fraction of martensite phase. Mechanically alloyed TiNi powders were heat-treated at vacuum of $10^{-6}$ torr for crystallization. Ball milled AI/TiNi composite powders were swaged at room temperature and rolled at 450 $^{\circ}C$. After mechanical alloying for 10 hours, Ti and Ni elements were alloyed completely and amorphous phase was formed. Amorphous phase was crystallized to martensite (Bl9') and austenite(B2) after heat treating for 1 hour at the temperature of 850 $^{\circ}C$, and TiNi$_3$, intermetallic compound was partially formed. Considerable amount of martensite phase was remained after swaging and rolling.

  • PDF

Triterpenoid Saponin from Viola hondoensis W.Becker et H Boss. and Their Effect on MMP-1 and Type I Procollagen Expression

  • Moon, Hyung-In;Chung, Jin-Ho;Lee, Joong-Ku;Zee, Ok-Pyo
    • Archives of Pharmacal Research
    • /
    • v.27 no.7
    • /
    • pp.730-733
    • /
    • 2004
  • Bioassay-guided fractionation has led to the isolation of triterpenoid saponins such as Acutoside A (3-O-[O-${\beta}$-D-glucopyrano$yl-(1${\to}$2)-O-${\beta}$-D-glucopyranosyl] oleanolic acid) from the whole plants of Viola hondoensis. Among them, Saponin 1 exhibited potent inhibitory activity against matrix metalloproteinase (MMP)-1, and prevented the UV-induced changes in the MMP-1 expression. In addition, compound was isolated from this plant for the first time.

Effect of Sc Addition on the Microstructure Modification of Al-6Si-2Cu Alloy (Sc 첨가에 따른 Al-6Si-2Cu 합금의 미세조직 개량화)

  • An, Seongbin;Kim, Chungseok
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.3
    • /
    • pp.150-158
    • /
    • 2022
  • The effects of scandium addition on the Al-6Si-2Cu Alloy were investigated. The Al-6Si-2Cu-Sc alloy was prepared by gravity die casting process. In this study, scandium was added at 0.2 wt%, 0.4 wt%, 0.8 wt%, and 1.0 wt%. The microstructure of Al-6Si-2Cu-Sc alloy was investigated using Optical Microscope, Field Emission Scanning Electron Microscope, Electron Back Scatter Diffraction, and Transmission Electron microscope. The microstructure of Al-6Si-2Cu alloy with scandium added changed from dendrite structure to equiaxed crystal structure in specimens of 0.4 wt% Sc or more, and coarse needle-shape eutectic Si and β-Al5FeSi phases were segmented and refined. The nanosized Al3Sc intermetallic compound was observed to be uniformly distributed in the modified Al matrix.

SBR/Organoclay Nanocomposites for the Application on Tire Tread Compounds

  • Kim, Wook-Soo;Lee, Dong-Hyun;Kim, Il-Jin;Son, Min-Jin;Kim, Won-Ho;Cho, Seong-Gyu
    • Macromolecular Research
    • /
    • v.17 no.10
    • /
    • pp.776-784
    • /
    • 2009
  • N,N-dimethyldodecylamine (tertiary amine)-modified MMT (DDA-MMT) was prepared as an organically modified layered silicate (OLS), after which styrene-butadiene rubber (SBR) nanocomposites reinforced with the OLS were manufactured via the latex method. The layer distance of the OLS and the morphology of the nanocomposites were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). By increasing the amount of N,N-dimethyldodecylamine (DDA) up to 2.5 g, the maximum values of torque, tensile strength and wear resistance of the SBR nanocomposites were increased due to the increased dispersion of the silicate layers in the rubber matrix and the increased crosslinking of the SBR nanocomposites by DDA itself. When SBR nanocomposites were manufactured by using the ternary filler system (carbon black/silica/OLS) to improve their dynamic properties as a tire tread compound, the tan $\delta$(at $0^{\circ}C$ and $60^{\circ}C$) property of the compounds was improved by using metal stearates instead of stearic acid. The mechanical properties and wear resistance were increased by direct substitution of calcium stearate for stearic acid because the filler-rubber interaction was increased by the strong ionic effect between the calcium cation and silicates with anionic surface. However, as the amount of calcium stearate was further increased above 0.5 phr, the mechanical properties and wear resistance were degraded due to the lubrication effect of the excessive amount of calcium stearate. Consequently, the SBR/organoclay nanocomposites that used carbon black, silica, and organoclay as their ternary filler system showed excellent dynamic properties, mechanical properties and wear resistance as a tire tread compound for passenger cars when 0.5 phr of calcium stearate was substituted for the conventionally used stearic acid.

The effects of Mg2Si(p) on microstructure and mechanical properties of AA332 composite

  • Zainon, Fizam;Ahmad, Khairel Rafezi;Daud, Ruslizam
    • Advances in materials Research
    • /
    • v.5 no.1
    • /
    • pp.55-66
    • /
    • 2016
  • This paper describes a study on the effects of $Mg_2Si_{(p)}$ addition on the microstructure, porosity, and mechanical properties namely hardness and tensile properties of AA332 composite. Each composite respectively contains 5, 10, 15, and 20 wt% reinforcement particles developed by a stir-casting. The molten composite was stirred at 600 rpm and melted at $900^{\circ}C{\pm}5^{\circ}C$. The $Mg_2Si$ particles were wrapped in an aluminum foil to keep them from burning when melting. The findings revealed that the microstructure of $Mg_2Si_{(p)}/AA332$ consists of ${\alpha}$-Al, binary eutectic ($Al+Mg_2Si$), $Mg_2Si$ particles, and intermetallic compound. The intermetallic compound was identified as Fe-rich and Cu-rich, formed as polygonal or blocky, Chinese script, needle-like, and polyhendrons or "skeleton like". The porosity of $Mg_2Si_{(p)}/AA332$ composite increased from 8-10% and the density decreased from 9-12% from as-cast. Mechanical properties such as hardness increased for over 42% from as-cast and the highest UTS, elongation, and maximum Q.I were achieved in the sample of 10% $Mg_2Si$. The study concludes that combined with AA332, the amount of 10 wt% of$Mg_2Si$ is a suitable reinforcement quantity with the combination ofAA332.

Electronic Structures of ANb2PS10 (A=Ag, Na) and AuNb4P2S20

  • Jung, Dong-Woon;Kim, Sung-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.6
    • /
    • pp.739-743
    • /
    • 2003
  • New quaternary compounds $ANb_2PS_{10}$ (A = Na, Ag) and $AuNb_4P_2S_{20}$ were synthesized and characterized. The structures of three compounds consist of one-dimensional infinite chains built by [$Nb_2S_{12}$] and [$PS_4$] units. Cation atoms are occupied within the van der Waals gap of sulfur atoms between infinite chains to make -S…$M^+$…S- contacts. There is only one Au atom site and so crystallographically a unit cell contains four equivalent Au atoms in $AuNb_4P_2S_{20}$. This is only the half of the numbers of Na or Ag atoms in $NaNb_2PS_{10}$ or $AgNb_2PS_{10}$. The ratio between $Nb_2PS_{10}$ matrix vs the cation is, therefore, 1 : 1 for Ag and Na, but it is 2 : 1 for Au. Mixed valency in Au or Nb was expected to balance the charge in the latter compound. The electronic structures calculated based on the extended Huckel tight-binding method show that $ANb_2PS_{10}$ (A = Ag, Na) are semiconducting, while $AuNb_4P_2S_{20}$ is metallic, which is not consistent with the experimental results of these three compounds that all exhibit semiconducting property. The result of calculation suggests that $AuNb_4P_2S_{20}$ might be a magnetic insulator. Magnetic measurement experiment exactly proved that the compound is a Slater antiferromagnetic material with the Neels' temperature of 45 K. It is recognized, therefore, that electronic structure analysis is very useful to understand the properties of compounds.