• Title/Summary/Keyword: composting

Search Result 659, Processing Time 0.029 seconds

Composting Effectiveness of A Sundry System with A Bin-type Composter for Recyle of Animal Wastes (축분뇨처리를 위한 Bin형 부숙조- Sundry 시스템의 퇴비화효율 평가)

  • 최홍림;김현태;정영윤
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.2
    • /
    • pp.92-103
    • /
    • 1993
  • A sunday system with a horizontal bin-type composter was constructed and operated to evaluate its composting performance for four days for each test in October, 1992. A sundry system is one of popular systems for composting livestock manure, of which main benefit is to utilize unlimited, clean, and free solar radiation. A rectangular concrete bin(composter) with dimension of 300cm(length) X90cm(width) X60cm(height) was bedded alternatively with four lanes of aeration pipes and heating pipes, and was insulated at three walls with 50mm styrofoam. Each aeration pipe of a diameter of 25mm had 4mm perforated holes at every 15cm longitudinally, and supplied air of about 2m$^3$/min to the composter to maintain aerobic condition . A stirrer rotating at 1 rpm made one round trip every 20 minutes on the conveying chain along the the length of the composter. Five tests (Test 1~Test 5) were implemented to evaluate the composting effectiveness of a sundry system with a horizontal bin-type composter. Treatments of two levels of the mixture ratio of swine manure and paper sludge cakes(manure : paper sludge cakes= 1 : 4 and 1 : 2) and two levels of the water content(W/C ; 70% and 50%) were made to test the significance of the physicochemical properties for decomposition of the mixture materials. Temperature, C/N ratio, water content, microbial activity of the composting materials were taken measurements to evaluate its performance with the lapse of composting time for tests. A small-scale sundry system with a bin-type composter did not appear to be an appropriate system for composting livestock manure. Since heat generation by the composting materials could not overcome heat loss due to areation in a small-scale composter, a proper thermal enviroment could not be maintained to propagate massively thermopilic microorganism relatively in a short period of time. Different from the result of Chol et al.(1992) 6), a temperature variation of the composting materials did not show the peak clearly and C/N ratio didn't lower with time as expected. Mesophilic microoragnism seemed to play an important role for decomposition of the mixture materials. A sundry system with a bin-type composter may be good for a large-scale livestock farm household which may produce enough animal manure. Therefore a decision should be made very carefully to choose a system for composting livestock waste.

  • PDF

Monitoring of non-point Pollutant Sources: Management Status and Load Change of Composting in a Rural Area based on UAV (UAV를 활용한 농촌지역 비점오염원 야적퇴비 관리상태 및 적재량 변화 모니터링)

  • PARK, Geon-Ung;PARK, Kyung-Hun;MOON, Byung-Hyun;SONG, Bong-Geun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.2
    • /
    • pp.1-14
    • /
    • 2019
  • In rural areas, composting is a source of non-point pollutants. However, as the quantitative distribution and loading have not been estimated, it is difficult to determine the effect of composting on stream water quality. In this study, composting datum acquired by unmanned aerial vehicle(UAV) was verified by using terrestrial LiDAR, and the management status and load change of the composting was investigated by UAV with manual control flight, thereby obtaining the basic data to determine the effect on the water system. As a result of the comparative accuracy assessment based on terrestrial LiDAR, the difference in the digital surface model(DSM) was within 0.21m and the accuracy of the volume was 93.24%. We expect that the accuracy is sufficient to calculate and utilize the composting load acquired by UAV. Thus, the management status of composting can be investigated by UAV. As the total load change of composting were determined to be $1,172.16m^3$, $1,461.66m^3$, and $1,350.53m^3$, respectively, the load change of composting could be confirmed. We expect that the results of this study can contribute to efficient management of non-point source pollution by UAV.

Distribution Characteristics of Airborne Bacteria in Organic-Waste Resource Facilities (유기성 폐기물 자원화 시설에서 발생되는 부유 세균의 분포 특성)

  • Kim, Ki-Youn;Ko, Han-Jong;Kim, Dae-Keun
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.2
    • /
    • pp.151-158
    • /
    • 2012
  • Objectives: Bioaerosols released by treating organic-waste resources cause a variety of environmental and hygiene problems. The objective of this study was to investigate the distribution characteristics of the airborne bacteria emitted from a pig manure composting plant, a principal site for organic-waste resource facilities. Methods: Three types of pig manure composting plant were selected based on fermentation mode: screw type, rotary type and natural-dry type. Each site was visited and investigated on a monthly basis between September 2009 and August 2010. A total of 36 air samplings were obtained from the pig manure composting plants. The air sampling equipment was a six-stage cascade impactor. Quantification and qualification of airborne bacteria in the air samples was performed by agar culture method and identification technique, respectively. Results: The mean concentrations of airborne bacteria in pig manure composting plant were 7,032 (${\pm}1,496$) CFU $m^{-3}$ for screw type, 3,309 (${\pm}1,320$) CFU $m^{-3}$ for rotary type, and 5,580 (${\pm}1,106$) CFU $m^{-3}$ for natural dry type. The screw type pig manure composting plant showed the highest concentration of airborne bacteria, followed by the natural dry type and the rotary type. The ratio of respirable to total airborne bacteria was approximately 40-60%. The predominant genera of airborne bacteria identified were Micrococcus spp., Staphylococcus spp. and Escherichia spp. Conclusion: Monthly levels of airborne bacteria were highest in August and lowest in November regardless of fermentation mode. There was no significant correlation relationship between airborne bacteria and environmental factors such as temperature, relative humidity and particulate matters in pig manure composting plants.

Heavy Metal Contents of Compost from Household Food Waste (음식쓰레기 퇴비화과정 중 중금속함량 변화)

  • Seo, Jeoung-Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.4 no.1
    • /
    • pp.23-31
    • /
    • 1996
  • The heavy metal concentration in mixed and separately collected household food waste, and their compost during the composting period was analysed. The mixed and separately collected food waste had Cd content of 8 mg/kg in spring and its content of 13 mg/kg in winter respectively. Its content was higher than by-product compost limit value(5 mg Cd/kg). Cd concentration in separately collected food waste in a house was higher in January, February, April and May than by-product compost limit value (5 mg Cd/kg). When Cd concentration in the initial composting material was higher than 5 mg/kg, its concentration in the compost of household food waste during the composting period was higher than by-product compost limit value, but it was not accumulated in the compost during the composting period. Fly ash was added to separately collected household food waste to adjust its moisture content for composting. Its addition had moisture conditioning and Cd concentration reducing effect in the compost. The average one month composted fresh compost from the mixed collected household food waste was matured in a pile out of doors for 7 months with turning the pile once a month and its heavy metal concentration was examined. Accumulation of the heavy metals in the compost did not occur during the composting period, because they were washed out during the rainfall.

  • PDF

Composting of Swine Manure Using Autoclaved Lightweight Concrete as a Bulking Agent (규산질다공체를 이용한 돈분 퇴비화에 관한 연구)

  • 전병수;곽정훈;박치호;평봉삼;김태일;유용희;김형호;한정대;최롱
    • Journal of Animal Environmental Science
    • /
    • v.4 no.1
    • /
    • pp.29-36
    • /
    • 1998
  • Sawdust is commonly used as a bulking agent for livestock manure composting. Nowadays, demand of sawdust for composting is increasing, so its price is very high and not easy to obtain. In this study in order to examine the effect of autoclaved lightweight concrete (ALC, one of the industrial wastes) on composting of swine manure, ALC (each size of 2, 4, an 8mm) was used as a bulking agent. Swine manure was mixed with each of sawdust and 8mm of ALC in a 1:1 ratio by volume and 2, 4mm of ALC was mixed in a 2:1 ratio by volume. The total period lasted 50 days and was divided into two periods. After mixing bulking agent with swine manure, they were left undisturbed to compost with aeration for an initial period of 20 days. At the end of this period, they were decomposed and mixed to effect a homogenization and then a second period of composting (without aeration) was conducted for 30 days. Temperature during the initial period of swine manure composting were above 70$^{\circ}C$ in all piles and maintained above 55$^{\circ}C$ for 5 days. Temperatures during the second period were relatively lower than the initial period. pH of the compost was increased during the initial period and after 50 days it reached 9.08 in sawdust pile and 9.03 in ALC pile ( 2mm). In nitrogen content of final compost, sawdust pile was higher than ALC piles by 21∼29%.

Degradation Kinetics of Three Veterinary Antibiotics in Composted and Stockpiled Manure

  • Kim, Sung-Chul;Yang, Jae-E.;Ok, Yong-Sik;Jung, Doug-Young;Carlson, Kenneth
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.1
    • /
    • pp.43-50
    • /
    • 2012
  • Two typical animal waste management practices, composting and stockpiling, were evaluated for their effect on the degradation of three veterinary antibiotics (VAs), chlortetracycline (CTC), tylosin (TYL), and monensin (MNS). The VAs were applied to horse manure plots subject to composting or stockpiling, and core samples were collected over a period of time. Selected buffer solutions were used to extract the VAs and analysis for concentration was conducted with solid phase extraction (SPE) followed by high performance liquid chromatography tandem mass spectrometry (HPLC/MS/MS) technique. The VAs demonstrated rapid dissipation within ten days followed by a gradual decrease in concentration until the end of the experimental period (141 days). All three VAs degraded more rapidly in the composting samples than in the stockpiling samples, particularly between 20 and 60 days of the observation period. Degradation of the three VAs generally followed a first-order kinetic model, and a fitted model with a calculated rate constant was determined for each treatment. TYL in composting showed the fastest degradation, with a calculated rate constant of $0.91day^{-1}$; the slowest degradation was exhibited by MNS in stockpiling, with rate constant of $0.17day^{-1}$. Calculated correlation coefficients ranged from 0.89 to 0.96, indicating a strong correlation between measured concentrations and fitted values in this study. Although concentration of TYL in composting treatment showed below detection limit during the test period, this study suggests that composting can reduce animal waste contaminants prior to field application as fertilizer.

Study on Optimum Conditions for the Composting of Industrial Wastewater Sludge (공단 폐수 슬러지의 퇴비화 최적조건)

  • Lee, Hong-Jae;Cho, Ju-Sik;Heo, Jong-Su
    • Journal of Environmental Science International
    • /
    • v.7 no.1
    • /
    • pp.96-103
    • /
    • 1998
  • To study the optimum conditions of composting with industrial wastewater sludge, the variations of temperature and $CO_2$ generation amount during the composting periods were investigated. The conditions were that industrial wastewater added to bulking agents such as sawdust and rice hull was used, and differently treated with microorganism seeding or not, initial C/N ratios, air flow rate and initial moisture contents, respectively. The results were summarized as follows : Seeding 5% of microorganism was higher the temperature than not seeding. And using sawdust as bulking agents, and adjusting 30~40 of Initial C/N ratio, 200ml/l.min. of k flow rate and 67~68% moisture contents were higher the temperature than any other conditions. Seeding 5% of microorganisms was higher $CO_2$ generation amount than not seeding. And that was much in the order of 7~40, 30~34 and 22~23 of initial C/N ratio. Judging from the results, it should be considered that the optimum conditions in the composting of industrial wastewater sludge were seeding of 5% microorganisms, and adjusting 30~34 of Initial C/N ratio, 200ml/l min. of air flow rate and 67~68% of Intitial moisture contents. The contents of inorganic matters and C/N ratio during the composting periods at optimum condition were a little Increased. and heavy metals contents after composting were lower than standard for fortllizer.

  • PDF

Fungal Diversity in Composting Process of Pig Manure and Mushroom Cultural Waste Based on Partial Sequence of Large Subunit rRNA

  • Cho, Kye-Man;Kwon, Eun-Ju;Kim, Sung-Kyum;Kambiranda, Devaiah M;Math, Reukaradhya K;Lee, Young-Han;Kim, Jung-Ho;Yun, Han-Dae;Kim, Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.8
    • /
    • pp.743-748
    • /
    • 2009
  • Fungal diversity during composting was investigated by culture-independent rDNA sequence analysis. Composting was carried out with pig manure and mushroom cultural waste using a field-scale composter (Hazaka system), and samples were collected at various stages. Based on partial sequence analysis of large subunit (LSU) ribosomal RNA (rRNA) and sequence identity values, a total of 12 different fungal species were found at six sampling sites; Geotrichum sp., Debaryomyces hansenii, Monographella nivalis, Acremonium strictum, Acremonium alternatum, Cladosporium sphaerospermum, Myriangium durosai, Pleurotus eryngii, Malassezia globosa, Malassezia restricta, Rhodotorula glutinis, and Fusarium sporotrichioides. Geotrichum sp. of the class Saccharomycetes was the most predominant fungal species throughout the composting process (185 out of a total of 236 identified clones, or 78.4%), followed by Acremonium strictum (7.6%), Monographella nivalis (5.1%), and Pleurotus eryngii (3.8%). The prevalence of Geotrichum sp. was the lowest (61.1%) at the beginning of composting, and then gradually increased to 92.5% after 10 days of composting.

Operability of Composting Facilities by Modeling (모델링에 의한 퇴비화 시설의 운전성에 관한 연구)

  • Yoo, Yeong Seok;Kim, I Tae;Gee, Chai Sung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.3 no.2
    • /
    • pp.59-68
    • /
    • 1995
  • Composting facilities are operated with air and moisture control. Composting effects on two operating factors was analysed changing aeration rate with and without water addition to maintain the optimun moisture level. Though the composting facilties are provided with appropriate surroundings for compositing, operating temperature is set for decomposition rate. Accordingly control of decomposition phases was analysed by modeling the process of high and low decomposition phases with various operating temperature. A composting model of "The Library of Compost Engineering Software" developed by Roger T. Haug Inc. in U.S.A. was applied in modeling. As result of this study, operation with optimum moisture has more sensitive temperature to aeration fluctuation and lead to higher reaction rate with lower aeration than operation with poor moisture. Decomposition rate in composting facilities depend on slow decomposition phase because high rate decomposing substances already have been decomposed before entire process is not completed. In order to enhance decomposition rate of organics, effective decomposition in slow decomposition phase needs to be focused.

  • PDF

A Study on Variation of Colony Forming Units of Heterotrophic Bacteria by Input Ratios of Bulking Materials in Aerobic Composting of Food Wastes (음식물류폐기물의 호기성 퇴비화에 있어서 팽화재 투입비에 따른 타가영양세균의 균락형성단위의 변화에 관한 연구)

  • Park, Seok-Hwan
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.4 s.91
    • /
    • pp.353-358
    • /
    • 2006
  • This study was performed to evaluate the effects of input ratios of bulking material in aerobic composting of food wastes on variation of colony forming units of heterotrophic bacteria. Wood chips were used as a bulking material. Volume ratios of food wastes to wood chips in reactor of Control, WC-1 and WC-2 were 10/0, 10/5 and 10/10, respectively. Reactors were operated for 24 days with 1hour stirring by 1rpm and 2 hours of the forced aeration per day. WC-2 reached high temperature range faster than WC-1, and the maximum temperature of WC-2 was higher than that of WC-1. This means that the reaction velocity of composting of WC-2 was faster than that of WC-1. Judging from the profile of pH changes, composting of WC-1 proceeded slowly and continuously. Composting of WC-2 proceeded rapidly in the former half reaction period, and kept steady state of high pH in the latter half reaction period. Namely, composting of WC-2 was nearly completed in the former half reaction period. In the case of WC-1 and WC-2. the maximum temperature was followed by the rapid pH increase in 2-3 days, and this was followed by the maximum Colony Forming Units(CFU) in 3 days. But, these three items of WC-2 always appeared faster and higher than those of WC-1.