• Title/Summary/Keyword: composting

Search Result 659, Processing Time 0.032 seconds

Physicochemical Characteristics of Fermented Pig Manure Compost and Cow Manure Compost by Pelletizing (펠렛 가공처리에 따른 돈분 발효퇴비와 우분 발효퇴비의 물리화학적 특성)

  • Jeong, Kwang Hwa;Park, Chi Ho;Choi, Dong Yun;Kwak, Jung Hoon;Yang, Chang Bum;Kang, Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.4
    • /
    • pp.118-127
    • /
    • 2005
  • The best way to treat livestock manure is a recycling the manure to arable land as an organic fertilizer. In this study, fermented cow manure compost and pig manure compost were used as a raw materials for pelletizing. The changes of physicochemical properties of each composts and pellets were investigated. The aim of this research was to improve availability of livestock manure compost. In pelletizing process of fermented livestock manure compost, the optimal water content to make pellet was around 40%. When clay was mixed by volume more than 15% as a bonding agent, the condition of pelletizing process was beginning to improve. On a dry matter basis, the contents of N, P and K of fermented pig manure compost were 2.05%, 1.89% and 1.31%, respectively. After pelletizing, the contents of compost pelleted with the pig manure compost were 1.96% 1.73% and 0.89%, respectively. The same parameters of cow manure compost were 2.52%, 1.01% and 2.98%, respectively. After processing, the contents of compost pelleted with the cow manure compost were 2.45%, 1.10% and 2.93%, respectively. After pelletizing, there were little change in the content of heavy metals such as Pb, Cd, As and Hg. When pelleted compost dried naturally was submerged in water, it was completely dissolved in 30 minutes. On the other hand, Pelleted compost dried with the mechanical convection oven set $70^{\circ}C$ for 24 hours was completely dissolved in 960 minutes. The volume and weight of pelleted compost were decreased with time. After 30 days of storing, the weight of pelleted compost was decreased by 15% compared with its original weight. The volume of it was decreased by 17~25% in the same time.

  • PDF

Investigation of the Utilization of Organic Materials and the Chemical Properties of Soil in the Organic Farms in Korea (국내 유기농재배지 유기물 시용실태 및 토양의 화학적 특성)

  • Lee Yong-Hoan;Lee Sang-Guei;Kim Sung-Hoan;Shin Jae-Hoon;Choi Doo-Hoi;Lee Yun-Jeong;Kim Han-Myeng
    • Korean Journal of Organic Agriculture
    • /
    • v.14 no.1
    • /
    • pp.55-67
    • /
    • 2006
  • A survey of 31 organic farmers were conducted to investigate the actual conditions of organic matter application. The amounts of organic matter application in the fields were higher in order of fruit, vegetable and rice farm. The average was 50 ton/ha in vegetable farms. In the green vegetable farms saw dust and animal manure were mainly utilized to make compost. Rice straw, wood chip, and forest bushes were also used for composting. In the fruit vegetable farms materials relatively lower in nitrogen content such as rice straw and cattle manure were used in vegetative period and materials higher in nitrogen content such as oil cake and wild grass were used in reproductive phase. Nutrient balance investigated in the farm in Icheon region who produce lettuce, angelica, and kale continuously in one cropping year indicated surplus in three major nutrients. Nitrogen and phosphorous were in excess by 29 and 10 kg respectively in the organic rice farm in yang-pyoung region. While soil chemical properties in the organic farms are within the adequate range in open field, it is much higher than the limits in the greenhouse soils. Overall application of organic matter is in an oversupply state. This results suggested that the organic matter management should be based on the soil conditions for sustainable cultivation. Chemical composition of organic matters and soil test reports should be considered prior to the application of organic matter.

  • PDF

Studies on the Compositional Change of Composts During Mushroom Cultivation (양송이 재배(栽培)에 따른 재배상퇴비(栽培床堆肥)의 성분변화(成分變化)에 관(關)한 연구(硏究))

  • Namgung, Hee
    • Applied Biological Chemistry
    • /
    • v.18 no.4
    • /
    • pp.203-218
    • /
    • 1975
  • In order to investigate the compositional change oil composts during the growing of cultivated mushroom (Agaricus bisporus), composts and mushrooms during the period of filling to ending under commercial conditions were subjected to chemical analyses. The results are summarized as follows and the mechanism of composting for mushroom cultivation was proposed. 1) The temperature change of growing bed and room was observed and the yield of mushroom for each cropping time was recorded to get $15.6kg/m^2$ in total crops. 2) Composts after filling showed pH 8.2 which dropped to 6.4 after casing and continued so up to ending. 3) On the dry weight basis of composts, crude ash increased whereas total nitrogen, ether extract and crude fibre decreased gradually to bring about the lowering of organic matter. 4) Total nitrogen of composts decreased gradually and more insoluble nitrogen was lost than soluble nitrogen. The C/N ratio of composts was initially 21 which was gradually lowered to 16. 5) The losses of ${\alpha}-cellulose$, pentosan and lignin in composts were 87%, 75%, and 60%, respectively, in which ${\alpha}-cellulose$ decreased markedly after casing. 6) Free reducing sugars of composts increased continuously. Gradually increased free amino acids till second cropping decreased again thereafter. Composts at the filling stage contained alanine, glutamic acid, glycine and serine in which glycine decreased markedly whereas proline increased remarkably upon mushroom cultivation. 7) Among minerals of composts, phosphorus and zinc tended to decrease, potassium and copper tended to increase anti sodium showed no marked change. 8) In comparison of mushrooms from different cropping time with respect to proximate composition, minerals, free reducing sugars and amino acids, no marked difference was observed. However, a little higher values were observed in crude fat, free reducing sugars and sodium content for early crops and in free amino acids and phosphorus content for late crops. Twelve free amino acids including alanine, serine, threonine, and glutamic acid were detected in the cultivated mushroom. 9) According to above experimental results, it was possible to support the mechanism of compositing that the formation of ammonia and decomposition of carbohydrates by mesophiles are followed by protein biosynthesis, formation of microbial bodies and nitrogen-rich lignin humus complex by thermophiles, thus supplying necessary nutrients for mushroom growth, along with residual carbohydrates.

  • PDF

Physiochemical and Quality Characteristics of Young Radish (Yulmoo) Kimchi Cultivated by Organic Farming (유기농법에 의해 재배된 열무김치의 품질 및 기능적 특성)

  • Jung, Su-Jin;So, Byung-Ok;Shin, Sang-Wook;Noh, Sun-Ok;Jung, Eun-Soo;Chae, Soo-Wan
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.8
    • /
    • pp.1197-1206
    • /
    • 2014
  • This study compared and analyzed the physiochemical and quality characteristics of young radish kimchi made with YR-FNC or YR-GC cultivated by organic farming as well as kimchi made with young radish cultivated by chemical composting/general farming (YR-Control). YR-Control showed higher contents of water and crude protein than YR-FNC and YR-GC kimchi but lower contents of crude ash, dietary fiber, and vitamin C. YR-FNC and YR-GC kimchi also showed higher contents of P and Cu than YR-Control but lower contents of N, K, Ca, Mg, Fe, and Zn. YR-Control fermentation progressed faster than that of YR-FNC or YR-GC after 24 days, and YR-Control more rapidly reached an appropriate pH. On the other hand, YR-FNC and YR-GC kimchi fermentation progressed slow and did not reach a pH level below 5.3. For period of fermentation, YR-Control and YR-FNC kimchi showed no significant difference in reducing sugar content, whereas that of YR-GC kimchi decreased significantly after 24 days of fermentation (P<0.002). YR-FNC and YR-GC kimchi showed 1.5~3 times higher total polyphenol and flavonoid contents than YR-Control at the beginning of fermentation, whereas YR-Control and YR-FNC kimchi showed a significant increase in total polyphenol and flavonoid contents during the fermentation period. By day 7 of fermentation, YR-FNC kimchi showed higher contents of lactic acid bacteria and total microbes than YR-Control. In the sensory evaluation, YR-FNC and YR-GC kimchi showed higher preference values than YR-Control. Therefore, kimchi made from young radish cultivated by organic farming has a longer freshness period than control kimchi and is characterized by excellent sensory quality, increased physiological contents, and improved beneficial health effects.

Heavy Metal Speciation in Compost Derived from the Different Animal Manures (이축분종(異畜糞種) 퇴비에서의 중금속 화학종분화(化學種分化))

  • Ko, H.J.;Choi, H.L.;Kim, K.Y.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.273-282
    • /
    • 2004
  • Composting animal manure is one of feasible treatments that reserves some portion of nutrients of manure. Although the application of compost to arable land has many advantages, the repeated cultivation of the agriculture land will accumulate the level of heavy metals in the soil which is potentially hamful to people and animals. Therefore it is important to know the characteristics concentration and species of heavy metals in a variety of chemical fonns than just total content of the metal. Because the metals in different forms have different mobilities and bioavailabilites. The aim of this study was to examine the total content and the chemical forms of the heavy metals; Cr, Ni, Cu, Zn, As, Cd and Pb in the animal manure composted with sawdust or rice hull as a bulking agent. A total of 75 compost samples were collected throughout the country and classified into the three groups in accordance with the characteristics of raw materials: swine manure, poultry manure, and mixed(swine + poultry + cattle)manure. The compost samples were analyzed for total metal content and fractionated by sequential chemical extractions to estimate the quantities of metals: exchangeable, adsorbed, organically bound, carbonate and residual. The results showed that the heavy metal concentrations in all compost samples were lower than the maximum acceptable limits by the Korea Compost Quality Standards. The concentrations of heavy metals in the swine manure compost were higher than those of both the poultry and the mixed manure compost except for Cr. Zn and Cu concentrations of three different compost ranged from 157 to 839 mg Zn/kg DM(dry matter) and from 47 to 458 mg Cu/kg DM, depending on the composition of animal manures. The predominant forms for extracted metals were Cr, Ni, Zn, As and Ph, residual; Cu, organic; and Cd, carbonate. The results suggested that the legal standards for composts should be reexamined to revise the criteria on the total metal content as well as metal speciation.

Study on the Screening System of Organic Resources for Agricultural Utilization (유기성 자원의 농업적 활용을 위한 선별체계 연구)

  • Lim, Dong-Kyu;Lee, Seung-Hwan;Kwon, Soon-Ik;So, Kyu-Ho;Sung, Ki-Suk;Koh, Mun-Hwan;Lee, Jeong-Taek
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.2
    • /
    • pp.92-100
    • /
    • 2005
  • This study was conducted to find suitable methods for screening organic resources useful for compost. Twenty-seven industrial and domestic sludges were collected from various cities and industrial areas. Contents of organic matters in the sludges were in the range of 79.3-98.0%, and the contents were much higher than the regulation level (60%) for raw materials of compost. Contents of total nitrogen were in the range of 0.8-2.6%. Contents of Fe and Al were very high. Content of HEM was highest in textile sludge ($257mg\;kg^{-1}$) and the contents in the others were in the range of $12.6-90.3mg\;kg^{-1}$. Content of PAHs was lowest in food sludge ($739.1{\mu}g\;kg^{-1}$ and pulp-mill sludge had the highest PAHs content ($3461.8{\mu}g\;kg^{-1}$). $Microtox^{(R)}$ $EC_{50}$ values were higher in the sludges which were classified as a possible material in composting after analysis and investigation. Lettuce root elongation and $EC_{50}$ values were relatively lower in pulp-mill sludge, sewage sludge 3 (Large city), food sludge and leather sludge. Therefore, mineral nutrients, heavy metals, organic compounds (HEM, PAHs, PCBs), and bioassay ($Microtox^{(R)}$ $EC_{50}$, Relative root elongation test) are recommended to be included in the screening system of raw material of compost in addition to the current regulation with organic matter and 8 heavy metals.

Prevalence of Pathogenic Bacteria in Livestock Manure Compost and Organic Fertilizer (가축분퇴비와 유기질비료에서 병원성박테리아의 분포도 분석)

  • Jung, Kyu-Seok;Heu, Sung-Gi;Roh, Eun-Jung;Lee, Dong-Hwan;Yun, Jong-Chul;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.824-829
    • /
    • 2011
  • In recent years, there has been an increasing public concern about fecal contamination of water, air and agricultural produce by pathogens residing in organic fertilizers such as manure, compost and agricultural by-products. Efforts are now being made to control or eliminate the pathogen populations at on-farm level. Development of efficient on-farm strategies to mitigate the potential risk posed by the pathogens requires data about how the pathogens prevail in livestock manure composts and organic fertilizers. Microbiological analysis of livestock manure composts and organic fertilizers obtained from 32 and 28 companies, respectively, were conducted to determine the total aerobic bacteria count, coliforms, Escherichia coli count and the prevalence of Staphylococcus aureus, Bacillus cereus, Salmonella spp., Escherichia coli O157:H7, Listeria monocytogenes, and Cronobacter sakazakii. The total aerobic bacteria counts in the livestock manure composts and organic fertilizers were in the range of 7 to $9log\;CFU\;g^{-1}$ and 4 to $6log\;CFU\;g^{-1}$, respectively. In the livestock manure composts, coliforms and E. coli were detected in samples obtained from 4 and 2 companies, respectively, in the range of 2 to $5log\;CFU\;g^{-1}$ and $2log\;CFU\;g^{-1}$. In the organic fertilizers, coliforms and E. coli were detected in samples obtained from 4 and 1 companies, respectively, in the range of 1 to $3log\;CFU\;g^{-1}$ and $2log\;CFU\;g^{-1}$. In 3 out 32 compost samples, B. cereus was detected, while other pathogens were not detected. In 28 organic fertilizers, no pathogens were detected. The complete composting process can result in the elimination of pathogens in livestock manure compost and organic fertilizer. The results of this study could help to formulate microbiological guidelines for the use of compost in environmental-friendly agriculture. This research provides information regarding microbiological quality of livestock manure compost and organic fertilizer.

Combustion Characteristics of Cow Manure Pellet as a Solid Fuel Source (고체연료원으로서의 우분 펠릿 연소특성)

  • Jeong, Kwang-Hwa;Lee, Dong-jun;Lee, Dong-Hyun;Lee, Sung-Hyoun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.2
    • /
    • pp.31-40
    • /
    • 2019
  • In Korea, 51,013 thousand tons of livestock manure was generated in 2018. A total of 46,530 thousand tons, which is 91.2% of the total amount of livestock manure generated, was treated by composting(40,647 thousand tons) or liquid fertilization(5,884 thousand tons) method. At present, the policy of livestock manure treatment in Korea is to make livestock manure into organic fertilizer(compost, liquid fertilizer) and then to applicate it on agricultural land. And this policy is very effective in terms of livestock manure treatment and nutrient recycling. However, considering the steadily declining farmland area for decades, the use of livestock manure compost could be limited in the future. There is also concern that local nutrient overloading, nutrient management regulation, and restrictions on the number of livestock may become serious problem for livestock manure treatment. In addition, there are some opinions that nutrient derived from livestock manure may flow into tributaries of major dams. In recent years, there has been a suspicion that fine dust may be generated from livestock manure compost. In recent years, the use of livestock manure fertilizer has been rapidly increasing, there is a growing demand of the development of new technologies for livestock manure treatment. Especially, cow excretes a larger amount of manure than other livestock, so that the efficiency of development of new technology for cow manure treatment will be high. Therefore, in this study, the combustion characteristics of cow manure pellet were investigated in order to analyzed whether cow manure could be used as source of solid fuel. During the combustion test, the weight loss of the cow manure pellet began to increase when the temperature of the combustion chamber reached $300^{\circ}C$. The ratio of $H_2$, $CH_4$, CO in the pyrolysis gas produced in the pyrolysis process of cow manure pellet were 6.65~11.62%, 0.58~1.54 and 11.47~14.07%, respectively.

The Patterns of CH4 and N2O fluxes from used Litter Stockpile from Korean Native Cattle (Hanwoo) (사용한 한우 깔짚에서 배출되는 CH4 및 N2O의 배출 특성)

  • Park, Kyu-Hyun;Choi, Dong-Yoon;Yoo, Yong-Hee
    • Journal of Animal Environmental Science
    • /
    • v.18 no.3
    • /
    • pp.145-150
    • /
    • 2012
  • This study was conducted to measure methane ($CH_4$) and nitrous oxide ($N_2O$) emissions from the 6 month old litter stockpile used for korean native cattle (Hanwoo) from August 3, 2007 to October 4, 2007. Daily mean $CH_4$ emissions was peaked to 273.013 ${\mu}g\;m^{-2}\;s^{-1}$ (SE : ${\pm}1.047{\mu}g\;m^{-2}\;s^{-1}$) on first day and then gradually decreased to 2.309 ${\mu}g\;m^{-2}\;s^{-1}$ (SE : ${\pm}0.061{\mu}g\;m^{-2}\;s^{-1}$) at the end of this experiment. Daily mean $N_2O$ emissions was as little as 0.269 ${\mu}g\;m^{-2}\;s^{-1}$ (SE : ${\pm}0.018{\mu}g\;m^{-2}\;s^{-1}$) on first day, but exponentially increased up to 3.569 ${\mu}g\;m^{-2}\;s^{-1}$ (SE : ${\pm}0.454{\mu}g\;m^{-2}\;s^{-1}$) on 43rd day and then slowly decreased to 1.888 ${\mu}g\;m^{-2}\;s^{-1}$ (SE : ${\pm}0.012{\mu}g\;m^{-2}\;s^{-1}$) at the end of this experiment. Carbon dioxide equivalent ($CO_2$-eq), calculated by global warming potentials of $CH_4$ or $N_2O$, of $CH_4$ on first day occupied approximately 99% of sum of $CO_2$-eq of $CH_4$ and $N_2O$. Methane emissions decreased and $N_2O$ emissions increased so that $CO_2$-eq ratio of $CH_4$ to $N_2O$ was 50:50 on 34th day. The effect of $N_2O$ on the ratio was increase thereafter. The ratio of daily mean $CH_4$ and $N_2O$ emissions to daily error of the mean was calculated to find daily fluctuation of $CH_4$ and $N_2O$ emissions. The ratio of $CH_4$ was less than 1.0% till 11th day but increased to 10.9% on 57th day. The ratio of $N_2O$ (0.4%~51.0%) was higher than that of $CH_4$, showing high in early stage and then gradually decrease, which was different from the pattern of $CH_4$. The ratio of daily mean emissions to daily error of the mean was little in case of active $CH_4$ or $N_2O$ generation period, which would be caused by the temporal and spatial heterogeneity of composting process. Hence more air supply on early stage to decrease $CH_4$ generation and proper turning to reduce spatial heterogeneity are needed to mitigate greenhouse gas emissions.