• Title/Summary/Keyword: compositional ratio

Search Result 146, Processing Time 0.029 seconds

Effect of Particle Size and Unburned Carbon Content of Fly Ash from Hadong Power Plant on Compressive Strength of Geopolymers (하동화력발전소 비산재의 입도크기와 미연탄소 함량이 지오폴리머의 압축강도에 미치는 영향)

  • Kang, Nam-Hee;Chon, Chul-Min;Jou, Hyeong-Tae;Lee, Sujeong
    • Korean Journal of Materials Research
    • /
    • v.23 no.9
    • /
    • pp.510-516
    • /
    • 2013
  • Fly ash is one of the aluminosilicate sources used for the synthesis of geopolymers. The particle size distribution of fly ash and the content of unburned carbon residue are known to affect the compressive strength of geopolymers. In this study, the effects of particle size and unburned carbon content of fly ash on the compressive strength of geopolymers have been studied over a compositional range in geopolymer gels. Unburned carbon was effectively separated in the $-46{\mu}m$ fraction using an air classifier and the fixed carbon content declined from 3.04 wt% to 0.06 wt%. The mean particle size ($d_{50}$) decreased from $22.17{\mu}m$ to $10.79{\mu}m$. Size separation of fly ash by air classification resulted in reduced particle size and carbon residue content with a collateral increase in reactivity with alkali activators. Geopolymers produced from carbon-free ash, which was separated by air classification, developed up to 50 % higher compressive strength compared to geopolymers synthesized from raw ash. It was presumed that porous carbon particles hinder geopolymerization by trapping vitreous spheres in the pores of carbon particles and allowing them to remain intact in spite of alkaline attack. The microstructure of the geopolymers did not vary considerably with compressive strength, but the highest connectivity of the geopolymer gel network was achieved when the Si/Al ratio of the geopolymer gel was 5.0.

High functional biodegradable card through annealing (어닐링을 통한 고기능성 생분해성 카드)

  • Sim, Jae-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.280-286
    • /
    • 2020
  • Cards made from PVC and PET materials do not oxidize or decompose readily, so they are generally incinerated or landfilled after use and cause pollution problems, such as environmental hormones and combustion gases during incineration. In addition, there is a problem of environmental pollution because they are discarded as semi-permanent refuse without being decomposed at landfill. This study attempted to solve this problem using polylactic acid (PLA), which is a representative biodegradable material as a substitute material that can solve the issues with these cards. On the other hand, when the thin card core sheet is made from only PLA material, the physical properties of the material are insufficient, such as the low temperature impact strength, high temperature stability, and poor bending properties, so its use is limited. To solve this problem, the compositional ratio of PLA was reviewed, and the optimal biodegradable compound composition was determined through an examination of the compositions, such as crystallization nucleating agents, additives, and nano compound technology. The high functionalization as a biodegradable card was verified through a laminating process using annealing technology.

Study of Scientific Comparison for the Characteristics of Black Ware Excavated from White Porcelain Kiln of Yongyeon-ri, Damyang and those of Other Regions

  • Choi, Jae Won;Han, Min Su
    • Journal of Conservation Science
    • /
    • v.35 no.4
    • /
    • pp.331-343
    • /
    • 2019
  • The purpose of this study was to investigate the material characteristics of black wares excavated from Yongyeon-ri, Damyang and to clarify the correlation of the factors that develop black coulor compared with black wares excavated from other regions. As a results of absorption rate, colour coordinate, compositional mineral, section analysis and contents showed high correlation between the kilns and the waste dumplings, indicating that they were made using the same materials. Second, comparing the microtextures and contents of the glaze layer with the excavated sherds from other kilns, a characteristic coagulation phenomena of iron oxides were not observed in Yongyeon-ri and Gilmyeong-ri, and it was considered that the material, mixing ratio, and firing environment were different from those of Bonggok-dong. In addition, statistical analysis using the major components revealed that the bodies of Yongyeon-ri were highly correlated with those of Bonggok-dong, which is nearest to the region, and similar to Gilmyeong-ri in the glaze layer. The characteristics of colorant were different depending on Fe2O3 content and K2O content also contributed to the classification of the composition of each excavated kiln. Conclusionally, it can be seen from the scientific analysis that the colour of black wares excluded from different regions is materially different from that of iron oxide, the coloring condition, and the firing environment.

Comparison of Plant-derived Carbonaceous Components (Organic Molecular Markers and 14carbon) in PM2.5 in Summer and Autumn at Kazo, Japan

  • Sasaka, Kouki;Wang, Qingyue;Sakamoto, Kazuhiko
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.3
    • /
    • pp.165-175
    • /
    • 2017
  • In Japan, the primary carbonaceous particles emitted from motor vehicles and waste incinerators have been reduced due to strict regulations against exhaust gas. However, the relative contribution of carbonaceous particles derived from plants and biomass has been increasing. Accordingly, compositional analysis of carbonaceous particles has become increasingly important to determine the sources and types of particles produced. To reveal the sources of the organic particles contained in particulate matter with diameters of ${\leq}2.5{\mu}m$ ($PM_{2.5}$) and the processes involved in their generation, we analyzed molecular marker compounds (2-methyltetrols, cis-pinonic acid, and levoglucosan) derived from the plants and biomass in the $PM_{2.5}$ collected during daytime- and nighttime-sampling periods in summer (July and August) and autumn (November) in Kazo, which is in the northern area of Saitama prefecture, Japan. We also measured $^{14}C$ carbonaceous concentrations in the same $PM_{2.5}$ samples. The concentrations of 2-methyltetrols were higher in the summer than in the autumn. Because the deciduous period overlaps with this decrease in the levels of 2-methyltetrols, we considered the emission source to broad-leaved trees. In contrast, the emission source of the cis-pinonic acid precursor was considered to be conifers, because its concentration remained almost constant throughout the year. The concentration of levoglucosan was considerably increased in the autumn due to frequent biomass open burning. The ratio of plant-derived carbon to total carbon, obtained by measuring of $^{14}C$, in summer $PM_{2.5}$ sample was higher in the nighttime, and could be influenced by anthropogenic sources during the daytime.

Study on Heterogeneous Structures and High-Frequency Magnetic Properties Amorphous CoZrNb Thin Films (비정질 CoZrNb 박막의 불균일 구조와 고주파 자기특성에 관한 연구)

  • 정인섭;허재헌
    • Journal of the Korean Magnetics Society
    • /
    • v.1 no.2
    • /
    • pp.31-36
    • /
    • 1991
  • Structural and compositional heterogeneities of sputter deposited, amorphous $Co_{87}Zr_{4}NB_{9}$ thin films were investigated using TEM and EDS with windowless detector. The films deposited with substrate bias and annealed in rotating magnetc field showed two amorphous phases of Co-rich region and (ZrNb)oxide-rich region, and revealed 'ultra-soft' magnetic properties. Revesible bias-responses and overdamped frequency responses, along with small Hc, Hk and Mr/Ms ratio, give the possibility of ultra-soft magnetic behavior fo CoZrNb thin films. We proposed the vortex type magnetization distribution in remanent state which was correlated with the thin film heterogeneity. Then, the ultra-soft characteristics of the compositionally heterogeneous films were explained by the spin vortices that minimized the total magnetostatic and exchange coupling energies.

  • PDF

From Theory to Implementation of a CPT-Based Probabilistic and Fuzzy Soil Classification

  • Tumay, Mehmet T.;Abu-Farsakh, Murad Y.;Zhang, Zhongjie
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1466-1483
    • /
    • 2008
  • This paper discusses the development of an up-to-date computerized CPT (Cone Penetration Test) based soil engineering classification system to provide geotechnical engineers with a handy tool for their daily design activities. Five CPT soil engineering classification systems are incorporated in this effort. They include the probabilistic region estimation and fuzzy classification methods, both developed by Zhang and Tumay, the Schmertmann, the Douglas and Olsen, and the Robertson et al. methods. In the probabilistic region estimation method, a conformal transformation is used to determine the soil classification index, U, from CPT cone tip resistance and friction ratio. A statistical correlation is established between U and the compositional soil type given by the Unified Soil Classification System (USCS). The soil classification index, U, provides a soil profile over depth with the probability of belonging to different soil types, which more realistically and continuously reflects the in-situ soil characterization, which includes the spatial variation of soil types. The CPT fuzzy classification on the other hand emphasizes the certainty of soil behavior. The advantage of combining these two classification methods is realized through implementing them into visual basic software with three other CPT soil classification methods for friendly use by geotechnical engineers. Three sites in Louisiana were selected for this study. For each site, CPT tests and the corresponding soil boring results were correlated. The soil classification results obtained using the probabilistic region estimation and fuzzy classification methods are cross-correlated with conventional soil classification from borings logs and three other established CPT soil classification methods.

  • PDF

A Study on the Architectural Planning of Spatial Organization Elements & Aerial Composition of Public Health Center within Governments Complexes Town - Focused on case studies in Seoul Metropolis - (복합행정타운 내 보건소의 공간구성요소와 면적구성에 관한 건축계획적 연구 - 서울특별시 사례를 중심으로 -)

  • Byun, Yong-Jin;Park, Jae-Seung
    • Korean Institute of Interior Design Journal
    • /
    • v.19 no.3
    • /
    • pp.224-233
    • /
    • 2010
  • As urban function has become diversified and complicated, multifunctional complex facilities to satisfy new functional desires are necessary. Since local autonomy started, many facilities previously run and managed by central administrative agencies are now under management of localities, and functionally, the necessity for governments complexes town to satisfy diverse taste of populace such as creating local community becomes imminent. Analyzing characteristics by space composition factor of the public health center, newly built as part of such governments complexes town and understanding required area of each part, this project is to be used as basic material for construction plan of public health center that is equipped with local characters while devising construction of the public health center in the governments complexes town. Research method is to analyze four public health center facilities located in governments complexes town sites built after 2007, among twenty five public health centers in Seoul, by spatial functions. Also, based on statistical documents of usage of public health center facilities, research over spatial compositional factors and area composition has been conducted. As a result, connectivity between local government building located inside the governments complexes town and public health center and that of spatial composition factor by part, area ratio by part and floor type of public health center are comprehended. Connectivity type of public health centers are divided into horizontal and vertical connectivity and it is found that spatial composition of public health center is compartmentalized into low level, mid level and high level, to make access by users easier. Level type is decided as radial, rotational and combined by hallway connecting facilities.

Structural, optical, and electrical properties on Cu(In,Ga)$Se_2$ thin-films with Cu-defects and In/(In+Ga) ratio (Cu(In,Ga)$Se_2$ 박막의 Cu 결함 및 In, Ga 비율의 변화에 따른 구조적, 광학적, 전기적 특성 연구)

  • Jeong, A.R.;Kim, G.Y.;Jo, W.;Jo, H.J.;Kim, D.H.;Sung, S.J.;Kang, J.K.;Lee, D.H.;Nam, D.H.;Cheong, H.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.47.1-47.1
    • /
    • 2011
  • We report on a direct measurement of two-dimensional chemical and electrical distribution on the surface of photovoltaic Cu(In,Ga)$Se_2$ thin-films using a nano-scale spectroscopic and electrical characterization, respectively. The Raman measurement reveals non-uniformed surface phonon vibration which comes from different compositional distribution and defects in the nature of polycrystalline thin-films. On the other hand, potential analysis by scanning Kelvin probe force microscopy shows a higher surface potential or a small work function on grain boundaries of the thin-films than on the grain surfaces. This demonstrates the grain boundary is positively charged and local built-in potential exist on grain boundary, which improve electron-hole separation on grain boundary. Local electrical transport measurements with scanning probe microscopy on the thin-films indicates that as external bias is increases, local current is started to flow from grain boundary and saturated over 0.3 V external bias. This accounts for carrier behavior in the vicinity of grain boundary with regard to defect states. We suggest that electron-hole separation at the grain boundary as well as chemical and electrical distribution of polycrystalline Cu(In,Ga)$Se_2$ thin-films.

  • PDF

Synthesis and analysis CdSe Quantum dot with a Microfluidic Reactor Using a Combinatorial Synthesis System (조합 합성 시스템의 미세유체반응기를 이용한 CdSe 양자점 합성 및 분석)

  • Hong, Myung Hwan;Lee, Duk-Hee;Kang, Lee-Seung;Lee, Chan Gi;Kim, Bum-Sung;Kim, Nam-Hoon
    • Journal of Powder Materials
    • /
    • v.23 no.2
    • /
    • pp.143-148
    • /
    • 2016
  • A microfluidic reactor with computer-controlled programmable isocratic pumps and online detectors is employed as a combinatorial synthesis system to synthesize and analyze materials for fabricating CdSe quantum dots for various applications. Four reaction condition parameters, namely, the reaction temperature, reaction time, Cd/Se compositional ratio, and precursor concentration, are combined in synthesis condition sets, and the size of the synthesized CdSe quantum dots is determined for each condition. The average time corresponding to each reaction condition for obtaining the ultraviolet-visible absorbance and photoluminescence spectra is approximately 10 min. Using the data from the combinatorial synthesis system, the effects of the reaction conditions on the synthesized CdSe quantum dots are determined. Further, the data is used to determine the relationships between the reaction conditions and the CdSe particle size. This method should aid in determining and selecting the optimal conditions for synthesizing nanoparticles for diverse applications.

Structural and Electrical Properties of Zn-Mn-O System Ceramics for the Application of Temperature Sensors (온도센서로의 응용을 위한 Zn-Mn-O계 세라믹의 구조적, 전기적 특성)

  • Kim, Kyeong-Min;Lee, Sung-Gap;Lee, Dong-Jin;Park, Mi-Ri;Kwon, Min-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.8
    • /
    • pp.470-475
    • /
    • 2016
  • In this study, $Zn_xMn_{3-x}O_4$ (x=0.95~1.20) specimens were prepared by using a conventional mixed oxide method. All specimens were sintered in air at $1,200^{\circ}C$ for 12 h and cooled at a rate of $2^{\circ}C/min$ to $800^{\circ}C$, subsequently quenching to room temperature. We investigated the structural and electrical properties of $Zn_xMn_{3-x}O_4$ specimens with variation of ZnO amount for the application of NTC thermistors. As results of X-ray diffraction patterns, all specimens showed the formation of a complete solid solution with tetragonal spinel phase. And, the second phase was observed by the solubility limit of Zn ions in $x{\geq}1.10$ composition. The average grain size was increased from $2.72{\mu}m$ to $4.18{\mu}m$ with increasing the compositional ratio of Zn ion from x=0.95 to 1.20, respectively. $Zn_{1.10}Mn_{1.90}O_4$ specimen showed the minimum electrical resistance of $57.5k{\Omega}$ at room temperature and activation energy of 0.392 eV.