• Title/Summary/Keyword: composites column

Search Result 45, Processing Time 0.033 seconds

Design of EDM Machine Tool Structures for Microfactory with High Stiffness and Damping Characteristics (마이크로팩토리 용 미세방전 공작기계의 고강성/고감쇠 설계)

  • Kim, Ju-Ho;Chang, Seung-Hwan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.205-211
    • /
    • 2007
  • In this paper, foam-composite sandwich structures for EDM machine tool components such as column and column block designed by controlling stacking sequences and cross-sectional dimensions of the composite structures. The original column block is a box-shaped structure made of aluminum connecting a column and a Z-stage of the system. This research was focused on the design of efficient column block structure using a foam-composite sandwich structure which have good bending stiffness and damping characteristics to reduce the mass and increase damping ratio of the system. Vibration tests for getting damping ratio with respect to the stacking angle and thickness of the composites were carried out. Finite element analyses for static defection and vibration behaviour were also carried out to find out the appropriate stacking conditions; that is, stacking sequence and rib configuration. From the test and analysis results it was found that composite-foam sandwich structures for the microfactory system can be successful alternatives for high precision machining.

Single and multi-material topology optimization of CFRP composites to retrofit beam-column connection

  • Dang, Hoang V.;Lee, Dongkyu;Lee, Kihak
    • Computers and Concrete
    • /
    • v.19 no.4
    • /
    • pp.405-411
    • /
    • 2017
  • Carbon Fiber Reinforced Plastic (CFRP) has commonly been used to strengthen existing RC structures. Wrapping the whole component with CFRP is an effective method and simple to execute. Besides, specific configuration of CFRP sheets (L, X and T shape) has also been considered in some experiments to examine CFRP effects in advance. This study aimed to provide an optimal CFRP configuration to effectively retrofit the beam-column connection using continuous material topology optimization procedure. In addition, Moved and Regularized Heaviside Functions and penalization factors were also considered. Furthermore, a multi-material procedure was also used to compare with the results from the single material procedure.

Seismic rehabilitation of substandard RC columns with partially deteriorated concrete using CFRP composites

  • Hou, Dongxu;Wu, Zhimin;Zheng, Jianjun;Cui, Yao
    • Computers and Concrete
    • /
    • v.15 no.1
    • /
    • pp.1-20
    • /
    • 2015
  • Many existing reinforced concrete (RC) columns in structures tend to become substandard RC ones due to updated standards or environmental changes. These substandard columns may alter the behaviors of the whole structure and therefore are in urgent need of seismic retrofitting. Owing to their superior advantages, carbon fiber reinforced polymer (CFRP) composites are widely used to retrofit RC columns. The applications mainly focus on various substandard RC columns, but few deals with substandard columns with deteriorated concrete, especially damaged by earthquake. The purpose of this paper is to investigate the seismic behaviors of CFRP reinforced partially deteriorated RC columns and to evaluate the effect of CFRP sheets on them. Six flexure-dominant columns were tested under a constant axial load and transverse cyclic displacements. It is found that the seismic behaviors of partially deteriorated columns can be recovered by wrapping CFRP sheets on them. Numerical analysis is then conducted using finite element methods and verified with experimental results. The effects of the axial load ratio, the ratio of the thickness of CFRP sheet to the column diameter, and the slenderness ratio on the seismic behaviors of CFRP reinforced RC columns are evaluated. Finally, a method is proposed to determine the required thickness of CFRP sheet.

The statistical two-order and two-scale method for predicting the mechanics parameters of core-shell particle-filled polymer composites

  • Han, Fei;Cui, Junzhi;Yu, Yan
    • Interaction and multiscale mechanics
    • /
    • v.1 no.2
    • /
    • pp.231-250
    • /
    • 2008
  • The statistical two-order and two-scale method is developed for predicting the mechanics parameters, such as stiffness and strength of core-shell particle-filled polymer composites. The representation and simulation on meso-configuration of random particle-filled polymers are stated. And the major statistical two-order and two-scale analysis formulation is briefly given. The two-order and two-scale expressions for the strains and stresses of conventionally strength experimental components, including the tensional or compressive column, the twist bar and the bending beam, are developed by means of their classical solutions with orthogonal-anisotropic coefficients. Then a new effective mesh generation algorithm is presented. The mechanics parameters of core-shell particle-filled polymer composites, including the expected stiffness parameters, minimum stiffness parameters, and the expected elasticity limit strength and the minimum elasticity limit strength, are defined by means of the stiffness coefficients and elasticity strength criterions for core, shell and matrix. Finally, the numerical results for predicting both stiffness and elasticity limit strength parameters are compared with the experimental data.

Seismic Retrofit Effect for Column of Subway Tunnel Reinforced by FRP-Ductile Material Layered Composites (FRP-연성재 적층복합체로 보강된 도시철도 개착식 터널 기둥의 내진보강효과)

  • Kim, Doo-Kie;Go, Sung-Hyuk;Kim, Jin-Yeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.85-92
    • /
    • 2010
  • Recently the earthquake occurrences in Korea are likely to increase. Therefore, the facilities such as bridges and tunnels under the unexpected earthquakes need to be enhanced. Especially most of the subways previously built before 1988 have not been seismically designed, so their seismic safety requirements are required to be inspected and/or reinforced. In this study, the seismic reinforcement using FRP-ductile material layered composites was proposed to reinforce for the subway columns. Material properties of FRP-ductile material layered composites were calculated by laboratory tests considering the laminated conditions of the composites. Numerical simulations were performed using the experimental results of the specimens and the calculated properties of the composites. Seismic performance varied according to the types of composites: ductile material, number of layers, fiber orientations.

On the FE Modeling of FRP-Retrofitted Beam-Column Subassemblies

  • Ronagh, H.R.;Baji, H.
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.2
    • /
    • pp.141-155
    • /
    • 2014
  • The use of fiber reinforced polymer (FRP) composites in strengthening reinforced concrete beam-column subassemblies has been scrutinised both experimentally and numerically in recent years. While a multitude of numerical models are available, and many match the experimental results reasonably well, there are not many studies that have looked at the efficiency of different finite elements in a comparative way in order to clearly identify the best practice when it comes to modelling FRP for strengthening. The present study aims at investigating this within the context of FRP retrofitted reinforced concrete beam-column subassemblies. Two programs are used side by side; ANSYS and VecTor2. Results of the finite element modeling using these two programs are compared with a recent experimental study. Different failure and yield criteria along with different element types are implemented and a useful technique, which can reduce the number of elements considerably, is successfully employed for modeling planar structures subjected to in-plane loading in ANSYS. Comparison of the results shows that there is good agreement between ANSYS and VecTor2 results in monotonic loading. However, unlike VecTor2 program, implicit version of ANSYS program is not able to properly model the cyclic behavior of the modeled subassemblies. The paper will be useful to those who wish to study FRP strengthening applications numerically as it provides an insight into the choice of the elements and the methods of modeling to achieve desired accuracy and numerical stability, a matter not so clearly explored in the past in any of the published literature.

Cyclic Responses of Steel Reinforced ECC Column under Reversed Cyclic Loading Conditions (철근 보강된 ECC 기둥의 반복하중에 대한 이력거동)

  • Hyun, Jung-Hwan;Shim, Young-Heung;Bang, Jin-Wook;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.75-82
    • /
    • 2015
  • In this study, experimental research was carried out to evaluate steel reinforced ECC (Engineered Cementitious Composites) column, which exhibits excellent crack control property and highly ductile behavior. Ordinary portland cement and high volume fly ash were used as binding materials in the mixture proportions for the purpose of achieving a high level of multiple cracking property with the tightly controlled crack width. To compare with the cyclic behavior of steel reinforced ECC column specimen, a conventional reinforced concrete column was prepared and tested under reversed cyclic loading condition. Based on the cyclic load test, ECC column exhibited higher cyclic behavior, compared to the conventional RC column, in terms of load carrying capacity and energy dissipation capacity.

Behavior of short columns constructed using engineered cementitious composites under seismic loads

  • Syed Humayun Basha;Xiaoqin Lian;Wei Hou;Pandeng Zheng;ZiXiong Guo
    • Steel and Composite Structures
    • /
    • v.48 no.5
    • /
    • pp.565-582
    • /
    • 2023
  • The present research reports the application of engineered cementitious composites (ECC) as an alternative to conventional concrete to improve the seismic behavior of short columns. Experimental and finite element investigation was conducted by testing five reinforced engineered cementitious composite (RECC) concrete columns (half-scale specimens) and one control reinforced concrete (RC) specimen for different shear-span and transverse reinforcement ratios under cyclic lateral loads. RECC specimens with higher shear-span and transverse reinforcement ratios demonstrated a significant effect on the column lateral load behavior by improving ductility (>5), energy dissipation capacity (1.2 to 4.1 times RC specimen), gradual strength degradation (ultimate drift >3.4%), and altering the failure mode. The self-confinement effect of ECC fibers maintained the integrity in the post-peak region and reserved the transmission of stress through fibers without noticeable degradation in strength. Finite element modeling of RECC specimens under monotonic incremental loads was carried out by adopting simplified constitutive material models. It was apprehended that the model simulated the global response (strength and stiffness) and damage crack patterns reasonably well.

Adsorption Characteristics of Organic Compounds on the Activated Carbon Fiber(II) (섬유상활성탄(纖維狀活性炭)에 의한 유기화합물(有機化合物)의 흡착특성(吸着特性)(II))

  • Sohn, Jin-Eon;Lee, Si-Won
    • Elastomers and Composites
    • /
    • v.24 no.2
    • /
    • pp.105-109
    • /
    • 1989
  • Liquid phase adsorption of organic compounds solution on the activated carbon fiber was measured by chromatographic method in a packed column. Adsorption equilibrium constant Ka of dextrose solution was found to be $72.5cm^3/g$ on ACF without bacteria growth, while in the bacterial ACF packed column Ka was $87.9cm^3/g$. It is suggested that for biological ACF there is a large contribution of bacterial activity to the adsorption equilibrium constant. Axial dispersion coefficient Ez was determined to be in proportional to flow rate and Pe=dpu/Ez independent or existence or bacteria.

  • PDF

Behaviour of FRP composite columns: Review and analysis of the section forms

  • Rong, Chong;Shi, Qingxuan;Zhao, Hongchao
    • Advances in concrete construction
    • /
    • v.9 no.2
    • /
    • pp.125-137
    • /
    • 2020
  • As confining materials for concrete, steel and fibre-reinforced polymer (FRP) composites have important applications in both the seismic retrofit of existing reinforced concrete columns and in the new construction of composite structures. We present a comprehensive review of the axial stress-strain behaviour of the FRP-confined concrete column. Next, the mechanical performance of the hybrid FRP-confined concrete-steel composite columns are comprehensively reviewed. Furthermore, the results of FRP-confined concrete column experiments and FRP-confined circular concrete-filled steel tube experiments are presented to study the interaction relationship between various material sections. Finally, the combinations of material sections are discussed. Based on these observations, recommendations regarding future research directions for composite columns are also outlined.