• Title/Summary/Keyword: composite wind turbine blade

Search Result 96, Processing Time 0.027 seconds

A Study on Structural Design and Analysis of Large Scale and High Efficiency Blades for Wind Turbine System (대형급 고효율 풍력 발전 시스템 블레이드 구조 설계 및 해석 연구)

  • Kong, Changduk;Kim, Minwoong;Park, Hyunbum
    • Journal of Aerospace System Engineering
    • /
    • v.6 no.4
    • /
    • pp.7-11
    • /
    • 2012
  • Recently, the renewable energy has been widely used as a wind energy and solar energy resource due to lack and environmental issues of the mostly used fossil fuel. In this situation, the interest in wind power has been risen as an important energy source. For this blade a high efficiency wind turbine blade was designed with the proposing aerodynamic design procedure, and a light and low cost composite structure blade was designed considering fatigue life. Structural analyses including load case study, stress, deformation, buckling, fatigue life and vibration analysis were performed using the Finite Element Method.

Structural analysis of horizontal axis wind turbine blade

  • Tenguria, Nitin;Mittal, N.D.;Ahmed, Siraj
    • Wind and Structures
    • /
    • v.16 no.3
    • /
    • pp.241-248
    • /
    • 2013
  • The wind turbine blade is a very important part of the rotor. Extraction of energy from wind depends on the design of blade. In this work, the analysis is done on a blade of length 38.95 m which is designed for V82-1.65 MW horizontal axis wind turbine (supplied by Vestas). The airfoil taken for the blade is NACA 634-221 which is same from root to tip. The analysis of designed blade is done in flap-wise loading. Two shapes of the spar are taken, one of them is of square shape and the other one is combination of square and cross shape. The blade and spar are of the same composite material. The Finite element analysis of designed blade is done in ANSYS. This work is focused on the two segments of blade, root segment and transition segment. Result obtained from ANSYS is compared with the experimental work.

Study on Structural Design of Glass/epoxy Composite Blade and Tower of Vertical Axis Wind Turbine System (수직축 풍력 발전 시스템의 유리/에폭시 복합재 블레이드 및 타워 구조 설계 연구)

  • Park, Hyunbum
    • Composites Research
    • /
    • v.31 no.3
    • /
    • pp.104-110
    • /
    • 2018
  • This study is to propose the structural design and analysis procedure about composite blade and tower of vertical axis wind turbine technology. In this study, structural design of tower for vertical axis wind turbine was performed after vertical blade design and manufacturing. The structural design requirement and specification of blade and tower was investigated. After tower of structural design, the structural analysis of the tower was conducted by the finite element method. It was performed that the stress, deformation and natural frequency analysis at the applied loading. The design modification of tower configuration was proposed by structural analysis. It was confirmed that the final designed tower structure is safety through the structural analysis.

A Study on Composite Blades of 1 MW Class HAWT Considering Fatigue Life (피로수명을 고려한 1 MW급 수평축 풍력터빈 복합재 블레이드 설계에 관한 연구)

  • Kim, Min-Woong;Kong, Chang-Duk;Park, Hyun-Bum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.7
    • /
    • pp.564-573
    • /
    • 2012
  • In this work, 1 MW class horizontal axis wind turbine blade configuration is properly sized and analyzed using the newly proposed aerodynamic design procedure and the in-house code developed by authors, and its design results are verified through comparison with experimental results of previously developed wind turbine blade. The structural design of the wind turbine blade is carried out using a composite materials and the netting and rule of mixture deign methods. The structural safety of the designed blade structure is investigated through the various load cases, stress, deformation, buckling and vibration analyses using the commercial FEM code, MSC.NASTRAN. Finally the required fatigue life is investigated using the modified Spera's experimental equation.

Structural Analysis and Testing of 1.5kW Class Wind Turbine Blade (1.5kW급 풍력발전기용 블레이드의 구조해석 및 구조시험)

  • Kim, Hong-Kwan;Lee, Jang-Ho;Jang, Se-Myong;Kang, Ki-Weon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.4
    • /
    • pp.51-57
    • /
    • 2010
  • This paper describes the structural design and testing for 1.5kW class wind turbine composite blade. In order to calculate the equivalent material properties rule-of-mixture is applied. Lay-up sequence, ply thickness and ply angle are designed to satisfy the requirements for structural integrity. Structural analysis by using commercial software ABAQUS is performed to assess the static, buckling and vibration response. And to verify the structural analysis and design, the full scale structural test in flapwise direction was performed under single point loading according to loading conditions calculated by the aerodynamic analysis and Case H (Parked wind loading) in IEC 61400-2.

Structural design and evaluation of a 3MW class wind turbine blade

  • Kim, Bum-Suk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.154-161
    • /
    • 2014
  • This research presents results of structural designs and evaluations for 3MW Wind Turbine Blade by FEM analysis. After the GFRP model was designed as a baseline model, failure check by Puck's failure criterion and buckling analysis were accomplished to verify safety of wind turbine blade in the critical design load case. Moreover, applicability of two kinds of carbon spar cap model, was studied by comparing total mass, price and tip deflection to the GFRP model. The results showed that the GFRP model had sufficient structural integrity in the critical design load case, and the carbon spar cap model could be a reasonable solution to reduce weights, tip deflections.

Aerodynamic and Structural Design of A High Efficiency Small Scale Composite Vertical Axis Wind Turbine Blade (복합재가 적용된 고효율 소형 수직축 풍력터빈 블레이드의 공력 설계 및 구조 설계에 관한 연구)

  • Gong, Chang-Duk;Lee, Ha-Seung;Kim, In-Kweon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.8
    • /
    • pp.758-765
    • /
    • 2011
  • Recently, the wind energy has been widely used as a renewable energy resource due to lack and environmental issues of the mostly used fossil fuel. This work is to develop a 500W class blade design of vertical axis wind turbine system which will be applicable to relatively low speed region like Korea and for the domestic use. For this wind turbine a high efficiency and low noise turbine blade was designed with the proposing aerodynamic design procedure, and a light composite structure blade. Structural analyses were performed using the Finite Element Method and fatigue life of the designed blade is estimated. Finally, in order to check its performance, the manufactured blade was tested by using truck and the results of test was good with respect to its analysis result.

Wind Turbine Blade Design using Design of Experiments (실험계획법을 이용한 풍력발전기용 블레이드의 설계)

  • Kang, Ki-Weon;Lee, Seung-Pyo;Chang, Se-Myong;Lee, Jang-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.422-422
    • /
    • 2009
  • This paper describes the structural design of small wind turbine blade by using design of experiments. Blade structure consists of skin, spar and foam. The materials for skin and spar are a kind of Glass/Epoxy and form is polyurethane. It has 7 lay-ups with different ply angle. A factorial design is applied to design the ply angles considering manufacturing constraints and to investigate the safety factor which is calculated by structural analysis. In order to perform the structural analysis, the commercial software ABAQUS is used. Tsai-Wu failure criterion is chosen to compute safety factor. The determination of the significance of effects in the experiments is made through the analysis of variance. The results show that ply angle at skin affects the safety factor of wind turbine blade. And from this result, optimal ply angles of composite blade are achieved.

  • PDF

A Numerical Analysis for the Strength Improvement of Composite Wind Turbine Blade (풍력발전기용 복합재 블레이드의 강도향상을 위한 수치해석)

  • Kwon, Oh-Heon;Kang, Ji-Woong;Jeong, Woo-Yul
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.4
    • /
    • pp.7-12
    • /
    • 2010
  • The average growth in the wind power energy market during the past five years has been 26% per year. Renewable energy resources, of which wind energy is prominent, are part of the solution to the global energy problem. Wind power system and the rotor blade concepts are reviewed, and loadings by wind and gravity as important factors for the mechanical performance of the materials are considered. So, the mechanical properties of fiber composite materials are discussed. In addition, it is necessary to analyze and evaluate the stress distribution and deformation for them in the design level. This study shows the result that CFRP rotor blade of wind turbine satisfies the strength and deformation through numerical analysis using the commercial finite element analysis program.

Aerodynamic and Structural Design on Small Wind Turbine Blade Using High Performance Configuration and E-Glass/Epoxy-Urethane Foam Sandwich Composite Structure (고성능 형상 및 유리섬유/에폭시-우레탄 샌드위치 구조를 사용한 소형 풍력발전 블레이드의 공력 및 구조설계)

  • Chang-Duk Kong;Jo-Hyug Bang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.1
    • /
    • pp.70-80
    • /
    • 2004
  • This study proposes a development result for the 1-kW class small wind turbine system, which is applicable to relatively low wind speed regions like Korea and has the variable pitch control mechanism. In the aerodynamic design of the wind turbine blade, parametric studies were carried out to determine an optimum aerodynamic configuration which is not only more efficient at low wind speed but whose diameter is not much larger than similar class other blades. A light composite structure, which can endure effectively various loads, was newly designed. In order to evaluate the structural design of the composite blade, the structural analysis was peformed by the finite element method. Moreover both structural safety and stability were verified through the full- scale structural test.