• Title/Summary/Keyword: composite technology

Search Result 5,475, Processing Time 0.032 seconds

Behavior of steel and concrete composite beams with a newly puzzle shape of crestbond rib shear connector: an experimental study

  • Le, Van Phuoc Nhan;Bui, Duc Vinh;Chu, Thi Hai Vinh;Kim, In-Tae;Ahn, Jin-Hee;Dao, Duy Kien
    • Structural Engineering and Mechanics
    • /
    • v.60 no.6
    • /
    • pp.1001-1019
    • /
    • 2016
  • The connector is the most important part of a composite beam and promotes a composite action between a steel beam and concrete slab. This paper presents the experiment results for three large-scale beams with a newly puzzle shape of crestbond. The behavior of this connector in a composite beam was investigated, and the results were correlated with those obtained from push-out-test specimens. Four-point-bending load testing was carried out on steel-concrete composite beam models to consider the effects of the concrete strength, number of transverse rebars in the crestbond, and width of the concrete slab. Then, the deflection, ultimate load, and strains of the concrete, steel beam, and crestbond; the relative slip between the steel beam and the concrete slab at the end of the beams; and the failure mechanism were observed. The results showed that the general behavior of a steel-concrete composite beam using the newly puzzle shape of crestbond shear connectors was similar to that of a steel-concrete composite beam using conventional shear connectors. These newly puzzle shape of crestbond shear connectors can be used as shear connectors, and should be considered for application in composite bridges, which have a large number of steel beams.

Field Emission Characteristics of Carbon Nanotube-Copper Composite Structures

  • Sung, Woo-Yong;Kim, Wal-Jun;Lee, Seung-Min;Lee, Ho-Young;Kim, Yong-Hyup
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1459-1461
    • /
    • 2005
  • Carbon nanotube -copper composite structures were fabricated using composite plating method and their field emission characteristics were investigated. Multi-walled carbon nanotubes synthesized by chemical vapor deposition were used in the present study. It was revealed that turn-on field of the structures was about 3.0 $V/{\mu}m$ at the current density of 0.1 ${\mu}A/cm^2$. We observed relatively uniform emission characteristics as well as stable emission currents. CNT-Cu composite plating method is efficient and it has no intrinsic limit on the plating area. Moreover, it gives strong adhesion between emitters and an electrode. The refore, we expect that CNT-Cu composite plating method can be applied to fabricate electron field emitters for large area FEDs and large area vacuum lighting sources.

  • PDF

Phase Separated Structure and Electro-optical Properties of the (Polymer/Liquid Crystal) Composite Films ((고분자/액정) 복합막의 상분리구조와 전기광학 특성)

  • Park, K.S.;Noh, C.H.;SaKong, D.S.;Nam, K.D.;Kajiyama, T.
    • Journal of the Korean Applied Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.29-39
    • /
    • 1995
  • The phase separated structure and the electro-optical properties of the (polymer/liquid) crystal : LC) composite film strongly depended on the weight fraction of LC in it. The continuous LC phase was formed in a three-dimensional polymer network when the LC weight fraction was above 40wt%. The aggregation structure of the composite film could be controlled by controlling the solvent evaporation velocity during the film preparation process. The smaller LC domains or channels were formed in the case of the faster solvent evaporation velocity. The composite film exhibited reversible light scattering-light transmission switching upon electric field -OFF and -ON states, respectiverly. The light scattering properties of the composite film strongly depended on the spatial distortion of the nematic directors as well as the mismatch in refractive indices between matrix polymer and LC.

Evaluation on compressive strength of steel-concrete composite piles using a large scaled UTM(Universal Test Machine) (대형 UTM을 이용한 강관합성 말뚝재료의 강도 특성 평가)

  • Lee, Ju-Hyung;Kwon, Hyung-Min;Park, Jae-Hyun;Kwak, Ki-Seok;Chung, Moon-Kyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.482-489
    • /
    • 2009
  • Various model piles with different sections such as reinforced concrete, steel, steel-concrete composite without rebar and steel-concrete composite with rebar were made, and vertical load test was conducted using a large scaled UTM(Universal Test Machine) to evaluate Young's modulus and ultimate load of the model piles. Based on the tests, ultimate load of steel-concrete composite pile is 31% greater than the sum of it of reinforced concrete pile and it of steel pile. This is caused that ultimate load and Young's modulus of inner concrete increase due to confining effect by outer steel casing. Variation of ultimate load is also insignificant depending on the ratio of length to diameter(L/D), therefore bucking has not an effect on change of ultimate load in case of the L/D below 10.

  • PDF

On the free vibration response of laminated composite plates via FEM

  • Sehoul, Mohammed;Benguediab, Soumia;Benguediab, Mohamed;Selim, Mahmoud M.;Bourada, Fouad;Tounsi, Abdelouahed;Hussain, Muzamal
    • Steel and Composite Structures
    • /
    • v.39 no.2
    • /
    • pp.149-158
    • /
    • 2021
  • In this research paper, the free vibrational response of laminated composite plates is investigated using a non-polynomial refined shear deformation theory (NP-RSDT). The most interesting feature of this theory is the parabolic distribution of transverse shear deformations while ensuring the conditions of nullity of shear stresses at the free surfaces of the plate without requiring the Shear correction factor "Ks". A fourth-nodded isoparametric element with four degrees of freedom per node is employed for laminated composite plates. The numerical analysis of simply supported square anti-symmetric cross-ply and angle-ply laminated plate is carried out using a special discretization based on four-node finite element method which four degrees of freedom per node. Several numerical results are presented to show the effect of the coupling parameters of the plate such as the modulus ratios, the thickness ratio and the plate layers number on adimensional eigen frequencies. All numerical results presented using the current finite element method (FEM) is presented in 3D curve form.

Static behavior of bolt connected steel-concrete composite beam without post-cast zone

  • Xing, Ying;Zhao, Yun;Guo, Qi;Jiao, Jin-feng;Chen, Qing-wei;Fu, Ben-zhao
    • Steel and Composite Structures
    • /
    • v.38 no.4
    • /
    • pp.365-380
    • /
    • 2021
  • Although traditional steel-concrete composite beams have excellent structural characteristics, it cannot meet the requirement of quick assembly and repair in the engineering. This paper presents a study on static behavior of bolt connected steel-concrete composite beam without post-cast zone. A three-dimensional finite element model was developed with its accuracy and reliability validated by available experimental results. The analysis results show that in the normal service stage, the bolt is basically in the state of unidirectional stress with the loss of pretightening can be ignored. Parametric studies are presented to quantify the effects of the post-cast zone, size and position of splicing gap on the behavior of the beam. Based on the studies, suggested size of gap and installation order were proposed. It is also confirmed that optimized concrete slab in mid-span can reduce the requirement of construction accuracy.

Preparation of high-performance nanofiltration membrane with antioxidant properties

  • Yu, Feiyue;Zhang, Qinglei;Pei, Zhiqiang;Li, Xi;Yang, Xuexuan;Lu, Yanbin
    • Membrane and Water Treatment
    • /
    • v.13 no.4
    • /
    • pp.191-199
    • /
    • 2022
  • In industrial production, the development of traditional polyamide nanofiltration (NF) membrane was limited due to its poor oxidation resistance, complex preparation process and high cost. In this study, a composite NF membrane with high flux, high separation performance, high oxidation resistance and simple process preparation was prepared by the method of dilute solution dip coating. And the sulfonated polysulfone was used for dip coating. The results indicated that the concentration of glycerin, the pore size of the based membrane, the composition of the coating solution, and the post-treatment process had important effects on the structure and performance of the composite NF membrane. The composite NF membrane prepared without glycerol protecting based membrane had a low flux, when the concentration of glycerin increased from 5% to 15%, the pure water flux of the composite NF membrane increased from 46.4 LMH to 108.2 LMH, and the salt rejection rate did not change much. By optimizing the coating system, the rejection rate of Na2SO4 and PEG1000 was higher than 90%, the pure water flux was higher than 40 LMH (60psi), and it can withstand 20,000 ppm.h NaClO solution cleaning. When the post treatment processes was adjusted, the salt rejection rate of NaCl solution (250 ppm) reached 45.5%, and the flux reached 62.2 LMH.

Preparation and Characterization of Modified Natural Rubber Applied to Seismic Isolation Damper Rubber

  • Seong-Guk Bae;Woong Kim;Yu mi Yun;Jin Hyok Lee;Jung-Soo Kim
    • Elastomers and Composites
    • /
    • v.58 no.3
    • /
    • pp.128-135
    • /
    • 2023
  • To improve the adhesive strength of natural rubber (NR) for a seismic isolation damper, citraconic acid-g-NR (CCA-g-NR) was synthesized via the melt grafting of citraconic acid (CCA) onto NR using an azobisisnomerobutyronitrile (AIBN) initiator. Subsequently, the influence of CCA and AIBN concentrations on the graft ratio G/R (%) and graft efficiency G/E (%) of the CCA-g-NR was investigated. The optimum CCA and AIBN concentrations required to achieve the desired G/R (3.49%) and G/E (49.8%) were found to be 7 phr and 0.13 phr, respectively. Additionally, we studied the influence of CCA-g-NR concentration on the mechanical properties (tensile strength, elongation at break, and modulus at 300%), adhesive strength, and cure characteristics of the rubber compound in the seismic isolation damper. As the concentration of CCA-g-NR increased, the elongation at break and adhesive strength of the compound increased, whereas its tensile strength and modulus at 300% decreased. Moreover, as the concentration increased, the maximum torque decreased and the scorch time was delayed to obtain an optimal vulcanization time.

Synthesis and Characterization of W Composite Powder with La2O3-Y2O3 Nano-dispersoids by Ultrasonic Spray Pyrolysis

  • Youn Ji Heo;Eui Seon Lee;Jeong Hyun Kim;Young-In Lee;Young-Keun Jeong;Sung-Tag Oh
    • Archives of Metallurgy and Materials
    • /
    • v.67 no.4
    • /
    • pp.1507-1510
    • /
    • 2022
  • An optimum route to synthesis the W-based composite powders with homogeneous dispersion of oxide nanoparticles was investigated. The La2O3 dispersed W powder was synthesized by ultrasonic spray pyrolysis using ammonium metatungstate hydrate and lanthanum nitrate. The dispersion of Y2O3 nanoparticles in W- La2O3 powder was carried out by a polymer addition solution method using yttrium nitrate. XPS and TEM analyses for the composite powder showed that the nano-sized La2O3 and Y2O3 particles were well distributed in W powder. This study suggests that the combination processing of ultrasonic spray pyrolysis and polymeric additive solution is a promising way to synthesis W-based composite powders.

Reliability Evaluation on Pultrusion Composite Sandwich Panel (Pultrusion 복합 샌드위치 패널의 신뢰성 평가)

  • Lee, Haksung;Kim, Eunsung;Oh, Jeha;Kim, Dongki;Lee, Juyoung;Kang, Shinjae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3
    • /
    • pp.414-420
    • /
    • 2013
  • Research on decreasing the weight of composite sandwich panels is in progress. This paper reports the experimental results for the mechanical behavior of a composite sandwich panel. The skins of sandwich panels were made of glass fiber sheets and plywood matrix composites. Their interior layers consisted of glass fiber pultrusion pipes and gold foam. Experimental tests were performed to obtain the mechanical properties and complex mechanical behavior. Before fatigue tests, tensile tests and 3-point bending tests were carried out to obtain the optimal design and determine their strength and failure mechanisms in the flat-wise position. After the static test, a fatigue test were conducted at a load frequency of 5 Hz, stress ratio (R) of 0.1, and endurance limit for the S-N curve. It showed that the failure modes were related to both the core design and skin failure.