• Title/Summary/Keyword: composite target

Search Result 258, Processing Time 0.024 seconds

Design of Lightweight S-Box for Low Power AES Cryptosystem (저전력 AES 암호시스템을 위한 경량의 S-Box 설계)

  • Lee, Sang-Hong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.1
    • /
    • pp.1-6
    • /
    • 2022
  • In this paper, the design of lightweight S-Box structure for implementing a low power AES cryptosystem based on composite field. In this approach, the S-Box is designed as a simple structure by which the three modules of x2, λ, and GF((22)2) merge into one module for improving the usable area and processing speed on GF(((22)2)2). The designed AES S-Box is modelled in Veilog-HDL at structural level, and a logic synthesis is also performed through the use of Xilinx ISE 14.7 tool, where Spartan 3s1500l is used as a target FPGA device. It is shown that the designed S-Box is correctly operated through simulation result, where ModelSim 10.3. is used for performing timing simulation.

Fabrication of Piezoelectric Cantilever with Microcone Tip for Sensing Local Stiffness of Biological Tissue (생체 조직의 국소 강도 측정을 위한 마이크로 콘 팁을 가진 압전 캔틸레버 제작)

  • Roh, Hee Chang;Yang, Dasom;Ryu, WonHyoung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.11
    • /
    • pp.743-748
    • /
    • 2017
  • For diseases that are difficult to detect by conventional imaging techniques, the development of a diagnostic method that allows sensors to be inserted into the human body to aid the diagnosis of local spots of the target tissue, is highly desirable. In particular, it is extremely difficult to determine whether vulnerable plaque can later develop into atherosclerosis using only imaging techniques. However, vulnerable plaques are expected to have slightly different mechanical properties than healthy tissue. In this study, we aim to develop a piezoelectric cantilever-type sensor that can be inserted into the human body and can detect the local mechanical properties of the target tissue. A piezoelectric polymer composite based on $BaTiO_3$ nanoparticles was optimized for fabrication of a piezoelectric cantilever. Next, a micro-cone tip was fabricated at the end of the piezoelectric cantilever by thermal drawing. Finally, stiffness of biological tissue samples was measured with the piezoelectric cantilever sensor for verifying its functionality.

S-value of Radioiodine($^{131}I$) in Korean Reference Adult Male (한국 성인남성 표준인을 대상으로 한 방사성옥소($^{131}I$)의 S-value 도출)

  • Kim, Jung-Hoon;Lim, Chang-Seon;Whang, Joo-Ho
    • Journal of radiological science and technology
    • /
    • v.31 no.1
    • /
    • pp.41-47
    • /
    • 2008
  • In order to better understand the effects of absorbed radioiodine upon Korean reference adult male, a mathematical phantom representation was contrived based on composite data of the physiology of Korean reference adult male. Using this, S-values of radioiodine($^{131}I$) per each organ were calculated. The calculated S-values were compared to the existing data described in the TM-8381 report of ORNLcalculated on the basis of an ICRP-23 reference male. The results indicated that S-values were higher for the phantom based on Korean reference adult male. The results of this study illustrate that, while the bio-chemical constitution of each source and target organ of the torso are important, the relative location of the organs and characteristics of the radionuclides also exert important influences.

  • PDF

Controlling Structural and Electrical Properties of Pt Nanopowder-Dispersed SiO2 Film (Pt 나노분말이 분산된 SiO2 박막의 구조 및 전기적 특성 제어)

  • Lee, Jae Ho;Shin, In Joo;Lee, Sung Woo;Kim, Hyeong Cheol;Choi, Byung Joon
    • Journal of Powder Materials
    • /
    • v.21 no.5
    • /
    • pp.355-359
    • /
    • 2014
  • Pt nanopowder-dispersed $SiO_2$ (SOP) films were prepared by RF co-sputtering method using Pt and $SiO_2$ targets in Ar atmosphere. The growth rate and Pt content in the film were controlled by means of manipulating the RF power of Pt target while that of $SiO_2$ was fixed. The roughness of the film was increased with increasing the power of Pt target, which was mainly due to the increment of the size and planar density of Pt nanopowder. It was revealed that SOP film formed at 10, 15, 20 W of Pt power contained 2.3, 2.7, and 3.0 nm of spherical Pt nanopowder, respectively. Electrical conductivity of SOP films was exponentially increased with increasing Pt power as one can expect. Interestingly, conductivity of SOP films from Hall effect measurement was greater than that from DC I-V measurement, which was explained by the significant increase of electron density.

Study on Optimization of Operating Conditions for High Temperature PEM Fuel Cells Using Design of Experiments (실험계획법을 이용한 고온 고분자 전해질 막 연료전지의 운전조건 최적화 연구)

  • Kim, Jintae;Kim, Minjin;Sohn, Youngjun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.1
    • /
    • pp.50-60
    • /
    • 2013
  • High temperature proton exchange membrane fuel cells (PEMFCs) using phosphoric acid (PA) doped polybenzimidazole (PBI) membranes have been concentrated as one of solutions to the limits with traditional low temperature PEMFCs. However, the amount of reported experimental data is not enough to catch the operational characteristics correlated with cell performance and durability. In this study, design of experiments (DOE) based operational optimization method for high temperature PEMFCs has been proposed. Response surface method (RSM) is very useful to effectively analyze target system's characteristics and to optimize operating conditions for a short time. Thus RSM using central composite design (CCD) as one of methodologies for design of experiments (DOE) was adopted. For this work, the statistic models which predict the performance and degradation rate with respect to the operating conditions have been developed. The developed performance and degradation models exhibit a good agreement with experimental data. Compared to the existing arbitrary operation, the expected cell lifetime and average cell performance during whole operation could be improved by optimizing operating conditions. Furthermore, the proposed optimization method could find different new optimal solutions for operating conditions if the target lifetime of the fuel cell system is changed. It is expected that the proposed method is very useful to find optimal operating conditions and enhance performance and durability for many other types of fuel cell systems.

A Study on Consolidation Settlement Calculation of Cutting Soft Clay as Fill Material (절취 연약점성토의 성토재 활용에 따른 압밀침하량 산정에 관한 연구)

  • Yonghee Park
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.4
    • /
    • pp.5-12
    • /
    • 2024
  • In the case of creating a site in the reclaimed land (public waters), due to the nature of the coastal sedimentary ground, large-scale construction materials are required, It is necessary to utilize soft clay, which is inevitably generated during construction of the complex, as a fill material in terms of resource recycling and economic aspects (reducing the amount of embankment required). In this study, changes in the consolidation characteristics of cut-out disturbed soft clay due to the recycling of soft clay soil were identified, and a consolidation settlement design plan was proposed. Through the results of the consolidation test of the study site, the change in consolidation characteristics (compression index reduction, precede load uncountable) due to disturbance (cutting) was confirmed, the method of calculating (consolidation settlement) the filling clay layer as the composite target layer (consolidation target layer, loading load layer) was analyzed as a result consistent with the actual behavior.

A Study on Activation Characteristics Generated by 9 MeV Electron Linear Accelerator for Container Security Inspection (컨테이너 보안 검색용 9 MeV 전자 선형가속기에서 발생한 방사화 특성평가에 관한 연구)

  • Lee, Chang-Ho;Kim, Jang-Oh;Lee, Yoon-Ji;Jeon, Chan-Hee;Lee, Ji-Eun;Min, Byung-In
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.5
    • /
    • pp.563-575
    • /
    • 2020
  • The purpose of this study is to evaluate the activation characteristics that occur in a linear accelerator for container security inspection. In the computer simulation design, first, the targets consisted of a tungsten (Z=74) single material target and a tungsten (Z=74) and copper (Z=29) composite target. Second, the fan beam collimator was composed of a single material of lead (Z=82) and a composite material of tungsten (Z-74) and lead (Z=82) depending on the material. Final, the concrete in the room where the linear accelerator was located contained magnetite type and impurities. In the research method, first, the optical neutron flux was calculated using the MCNP6 code as a F4 Tally for the linear accelerator and structure. Second, the photoneutron flux calculated from the MCNP6 code was applied to FISPACT-II to evaluate the activation product. Final, the decommissioning evaluation was conducted through the specific activity of the activation product. As a result, first, it was the most common in photoneutron targets, followed by a collimator and a concrete 10 cm deep. Second, activation products were produced as by-products of W-181 in tungsten targets and collimator, and Co-60, Ni-63, Cs-134, Eu-152, Eu-154 nuclides in impurity-containing concrete. Final, it was found that the tungsten target satisfies the permissible concentration for self-disposal after 90 days upon decommissioning. These results could be confirmed that the photoneutron yield and degree of activation at 9 MeV energy were insignificant. However, it is thought that W-181 generated from the tungsten target and collimator of the linear accelerator may affect the exposure when disassembled for repair. Therefore, this study presents basic data on the management of activated parts of a linear accelerator for container security inspection. In addition, When decommissioning the linear accelerator for container security inspection, it is expected that it can be used to prove the standard that permissible concentration of self-disposal.

Analyzing dependency of Korean subordinate clauses using a composit kernel (복합 커널을 사용한 한국어 종속절의 의존관계 분석)

  • Kim, Sang-Soo;Park, Seong-Bae;Park, Se-Young;Lee, Sang-Jo
    • Korean Journal of Cognitive Science
    • /
    • v.19 no.1
    • /
    • pp.1-15
    • /
    • 2008
  • Analyzing of dependency relation among clauses is one of the most critical parts in parsing Korean sentences because it generates severe ambiguities. To get successful results of analyzing dependency relation, this task has been the target of various machine learning methods including SVM. Especially, kernel methods are usually used to analyze dependency relation and it is reported that they show high performance. This paper proposes an expression and a composit kernel for dependency analysis of Korean clauses. The proposed expression adopts a composite kernel to obtain the similarity among clauses. The composite kernel consists of a parse tree kernel and a liner kernel. A parse tree kernel is used for treating structure information and a liner kernel is applied for using lexical information. the proposed expression is defined as three types. One is a expression of layers in clause, another is relation expression between clause and the other is an expression of inner clause. The experiment is processed by two steps that first is a relation expression between clauses and the second is a expression of inner clauses. The experimental results show that the proposed expression achieves 83.31% of accuracy.

  • PDF

Patent Technologies for Reducing Micro-Dust (미세먼지 저감을 위한 특허기술들)

  • Cho, Taejun;Kim, Tae-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.2
    • /
    • pp.9-14
    • /
    • 2020
  • Four developed patents have applied for a new type of Composite Cyclone Scrubber followed by the previous research (Cho and Kim, 2017), including dust reducing fan with filters. Regarding target installation and maintenance cost, 64% reduction for investment costs (6.2 billion won vs. 17 billion won) compared to existing road pollution reduction system, while social benefit costs increase by 43% compared to existing road pollution reduction measures (72.6 billion won vs. 50.8 billion won). The composition of the device is an air blower type spiral guide vane, and an injection pressure collecting dust efficiency. A nozzle varies Injection angle and contact range, spray liquid species (waterworks, salty water). The proposed patent tests are circulation water Time-by-Time Spray and collected 41.4% more increased micro dust since the sprayed water meets contaminated gas due to the 45° degree colliding, which is 141% increased conventional dust collector. (Ratio of collection over 85%). As regards the source of collection liquid, circulated rainwater and well water, we expect a huge amount of energy and economically saved eco-friendly system in our patent. Finally, the guided vane and metal filter reduced over 90% micro-dust, while sprayed water cleans the vane and filters, resultantly minimizing the maintenance budget. The preliminary evaluations of the developed design make it possible to reduce not only cheaper maintenance budget due to the characteristic water spraying but the cost of water comes from mainly rain and underground.

Ultra-high Temperature EM Wave Absorption Behavior for Ceramic/Sendust-aluminosilicate Composite in X-band (X-Band 영역에서의 세라믹/샌더스트-알루미노실리케이트 복합재의 초고온 전자파 흡수 거동)

  • Choi, Kwang-Sik;Sim, Dongyoung;Choi, Wonwoo;Shin, Joon-Hyung;Nam, Young-Woo
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.201-215
    • /
    • 2022
  • This paper presents the development of thin and lightweight ultra-high temperature radar-absorbing ceramic composites composed of an aluminosilicate ceramic matrix-based geopolymer reinforced ceramic fiber and sendust magnetic nanoparticles in X-band frequency range (8.2~12.4 GHz). The dielectric properties with regard to complex permittivity of ceramic/sendust-aluminosilicate composites were proportional to the size of sendust magnetic nanoparticle with high magnetic characteristic properties as flake shape and its concentrations in the target frequency range. The characteristic microstructures, element composition, phase identification, and thermal stability were examined by SEM, EDS, VSM and TGA, respectively. The fabricated total thicknesses of the proposed single slab ultra-high temperature radar absorber correspond to 1.585 mm, respectively, exhibiting their excellent EM absorption performance. The behavior of ultra-high temperature EM wave absorption properties was verified to the developed free-space measurement system linked with high temperature furnace for X-band from 25℃ to 1,000℃.