• Title/Summary/Keyword: composite structures

Search Result 4,787, Processing Time 0.028 seconds

Delamination growth analysis in composite laminates subjected to low velocity impact

  • Kharazan, Masoud;Sadr, M.H.;Kiani, Morteza
    • Steel and Composite Structures
    • /
    • v.17 no.4
    • /
    • pp.387-403
    • /
    • 2014
  • This paper presents a high accuracy Finite Element approach for delamination modelling in laminated composite structures. This approach uses multi-layered shell element and cohesive zone modelling to handle the mechanical properties and damages characteristics of a laminated composite plate under low velocity impact. Both intralaminar and interlaminar failure modes, which are usually observed in laminated composite materials under impact loading, were addressed. The detail of modelling, energy absorption mechanisms, and comparison of simulation results with experimental test data were discussed in detail. The presented approach was applied for various models and simulation time was found remarkably inexpensive. In addition, the results were found to be in good agreement with the corresponding results of experimental data. Considering simulation time and results accuracy, this approach addresses an efficient technique for delamination modelling, and it could be followed by other researchers for damage analysis of laminated composite material structures subjected to dynamic impact loading.

Analysis of the Composite Carbody Structures Using Submodeling Approach (서브모델링기법으로 이용한 복합재 차체 구조물의 상세해석)

  • Kim, Soo-Hyun;Kim, Chun-Gon;Kim, Jung-Seok;Jeong, Jong-Cheol;Cho, Sea-Hyun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.243-246
    • /
    • 2005
  • The weight reduction of carbody stl1lctures is of great concern in developing high speed tilting train for the normal operation of tilting system. The use of composite materials for the carbody structures has many advantages due to their excellent material propel1ies. In this paper, finite element analysis was conducted to verify the safety of the composite structures of Tilting Train eXpress(TTX). A train prototype with carbon/epoxy composite carbody was manufactured to perform static loading tests according to JIS E 7105. The loading tests were simulated by FE analysis to compare with the test results. To obtain more accurate and detailed result of stress distribution in local region of carbody, the submodeling approach was used. The submodeling analysis results showed the high levels of stress concentration occured on window frame part of TTX as the loading test results did.

  • PDF

State-of-the-art of advanced inelastic analysis of steel and composite structures

  • Liew, J.Y. Richard
    • Steel and Composite Structures
    • /
    • v.1 no.3
    • /
    • pp.341-354
    • /
    • 2001
  • This paper provides a state-of-the-art review on advanced analysis models for investigating the load-displacement and ultimate load behaviour of steel and composite frames subjected to static gravity and lateral loads. Various inelastic analysis models for steel and composite members are reviewed. Composite beams under positive and negative moments are analysed using a moment-curvature relationship which captures the effects of concrete cracking and steel yielding along the members length. Beam-to-column connections are modeled using rotational spring. Building core walls are modeled using thin-walled element. Finally, the nonlinear behaviour of a complete multi-storey building frame consisting of a centre core-wall and the perimeter frames for lateral-load resistance is investigated. The performance of the total building system is evaluated in term of its serviceability and ultimate limit states.

Finite element vibration analysis of laminated composite parabolic thick plate frames

  • Das, Oguzhan;Ozturk, Hasan;Gonenli, Can
    • Steel and Composite Structures
    • /
    • v.35 no.1
    • /
    • pp.43-59
    • /
    • 2020
  • In this study, free vibration analysis of laminated composite parabolic thick plate frames by using finite element method is introduced. Governing equations of an eigenvalue problem are obtained from First Order Shear Deformation Theory (FSDT). Finite element method is employed to obtain natural frequency values from the governing differential equations. The frames consist of two flat square plates and one singly curved plate. Parameters like radii of curvature, aspect ratio, ply orientation and boundary conditions are investigated to understand their effect on dynamic behavior of such a structure. In addition, multi-bay structures of such geometry with different stacking order are also taken into account. The composite frame structures are also modeled and simulated via ANSYS to verify the accuracy of the present study.

Height-thickness ratio on axial behavior of composite wall with truss connector

  • Qin, Ying;Shu, Gan-Ping;Zhou, Xiong-Liang;Han, Jian-Hong;He, Yun-Fei
    • Steel and Composite Structures
    • /
    • v.30 no.4
    • /
    • pp.315-325
    • /
    • 2019
  • Double skin composite walls offer structural and economic merits over conventional reinforced concrete counterparts in terms of higher capacity, greater stiffness, and better ductility. This paper investigated the axial behavior of double skin composite walls with steel truss connectors. Full-scaled tests were conducted on three specimens with different height-to-thickness ratios. Test results were evaluated in terms of failure mode, load-axial displacement response, buckling loading, axial stiffness, ductility, strength index, load-lateral deflection, and strain distribution. The test data were compared with AISC 360 and Eurocode 4 and it was found that both codes provided conservative predictions on the safe side.

Health Monitoring in Composite Structures using Piezoceramic and fiber Optic Sensors (압전세라믹 센서와 광섬유 센서를 이용한 복합재 구조물의 건전성 모니터링)

  • Kim, C.G.;Sung, D.U.;Kim, D.H.;Bang, H.J.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.5
    • /
    • pp.445-454
    • /
    • 2003
  • Health monitoring is a major concern not only in the design and manufacturing but also in service stages for composite laminated structures. Excessive loads or low velocity impact can cause matrix cracks and delaminations that may severely degrade the load carrying capability of the composite laminated structures. To develop the health monitoring techniques providing on-line diagnostics of smart composite structures can be helpful in keeping the composite structures sound during their service. In this study, we discuss the signal processing techniques and some applications for health monitoring of composite structures using piezoceramic sensors and fiber optic sensors.

Compressive behavior of profiled double skin composite wall

  • Qin, Ying;Li, Yong-Wei;Su, Yu-Sen;Lan, Xu-Zhao;Wu, Yuan-De;Wang, Xiang-Yu
    • Steel and Composite Structures
    • /
    • v.30 no.5
    • /
    • pp.405-416
    • /
    • 2019
  • Profiled composite slab has been widely used in civil engineering due to its structural merits. The extension of this concept to the bearing wall forms the profiled composite wall, which consists of two external profiled steel plates and infill concrete. This paper investigates the structural behavior of this type of wall under axial compression. A series of compression tests on profiled composite walls consisting of varied types of profiled steel plate and edge confinement have been carried out. The test results are evaluated in terms of failure modes, load-axial displacement curves, strength index, ductility ratio, and load-strain response. It is found that the type of profiled steel plate has influence on the axial capacity and strength index, while edge confinement affects the failure mode and ductility. The test data are compared with the predictions by modern codes such as AISC 360, BS EN 1994-1-1, and CECS 159. It shows that BS EN 1994-1-1 and CECS 159 significantly overestimate the actual compressive capacity of profiled composite walls, while AISC 360 offers reasonable predictions. A method is then proposed, which takes into account the local buckling of profiled steel plates and the reduction in the concrete resistance due to profiling. The predictions show good correlation with the test results.

Smart Composite Beams with Shape Memory Alloy Strips Having TWSME (2방향 형상기억효과 SMA 띠가 부착된 복합재 보의 거동)

  • Kim, Jung-Taek;Kim, Cheol;Yoon, Ji-Won
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.51-54
    • /
    • 2005
  • Shape memory alloys (SMAs) find many applications in smart composite structural systems as the active components. Their ability to provide a high force and large displacement makes them an excellent candidate for an actuator for controlling the shape of smart structures. In this paper, using a macroscopic model that captures the thermo-mechanical behaviors and the two-way shape memory effect (TWSME) of SMAs smart morphing polymeric composite shell structures like shape-changeable UAV wings is demonstrated and analyzed numerically and experimentally when subjected to various kinds of pressure loads. The controllable shapes of the morphing shells to that thin SMA strip actuator are attached are investigated depending on various phase transformation temperatures. SMA strips start to transform from the martensitic into the austenitic state upon actuation through resistive heating, simultaneously recover the prestrain, and thus cause the shell structures to deform three dimensionally. The behaviors of composite shells attached with SMA strip actuators are analyzed using the finite element methods and 3-D constitutive equations of SMAs. Several morphing composite shell structures are fabricated and their experimental shape changes depending on temperatures are compared to the numerical results. That two results show good correlations indicates the finite element analysis and 3-D constitutive equations are accurate enough to utilize them for the design of smart composite shell structures for various applications.

  • PDF

A Study on Failure Evaluation of Korean Low Floor Bus Structures Made of Hybrid Sandwich Composite (하이브리드 샌드위치 복합재 초저상버스 구조물의 파손 평가 연구)

  • Lee, Jae-Youl;Shin, Kwang-Bok;Lee, Sang-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.50-61
    • /
    • 2007
  • The structural stiffness, strength and stability on the bodyshell and floor structures of the Korean Low Floor Bus composed of laminate, sandwich panels and metal reinforced frame were evaluated. The laminate composite panel and facesheet of sandwich panel were made of WR580/NF4000 glass fabric/epoxy laminate, while aluminum honeycomb or balsa was applied to the core materials of the sandwich panel. A finite element analysis was used to verify the basic design requirements of the bodyshell and the floor structure. The use of aluminum reinforced frame and honeycomb core was beneficial for weight saving and structural performance. The symmetry of the outer and inner facesheet thickness of sandwich panels did not affect the structural integrity. The structural strength of the panels was evaluated using Von-Mises criterion for metal structures and total laminate approach criterion for composite structures. All stress component of the bodyshell and floor structures were safely located below the failure stresses. The total laminate approach is recommended to predict the failure of hybrid sandwich composite structures at the stage of the basic design.

Dynamic Instability of Delaminated Composite Structures with Various Geometrical Shapes (다양한 기하학적 형상을 갖는 층간 분리된 복합신소재 적층구조의 동적 불안정성)

  • Lee, Sang-Youl;Chang, Suk-Yoon
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • The dynamic instability analysis of delaminated composite structures subjected to in-plane pulsating forces is carried out based on the higher order shell theory of Sanders. In the finite element (FE) formulation, the seven degrees of freedom per each node are used with transformations in order to fit the displacement continuity conditions at the delamination region. The boundaries of the instability regions are determined using the method proposed by Bolotin. The numerical results obtained for skew plates and shells are in good agreement with those reported by other investigators. The new results for delaminated skew plate and shell structures in this study mainly show the effect of the interactions between the radius-length ratio and other various parameters, for example, skew angles, delamination size, the fiber angle of layer and location of delamination in the layer direction. The effect of the magnitude of the periodic in-plane load on the instability regions is also investigated.

  • PDF