• 제목/요약/키워드: composite sheets

검색결과 312건 처리시간 0.023초

The effect of curvature on the impact response of foam-based sandwich composite panels

  • Yurddaskal, Melis;Baba, Buket Okutan
    • Steel and Composite Structures
    • /
    • 제20권5호
    • /
    • pp.983-997
    • /
    • 2016
  • The aim of this study is to investigate the impact behavior and impact-induced damage of sandwich composites made of E-glass/epoxy face sheets and PVC foam. The studies were carried out on square flat and curved sandwich panels with two different radius of curvatures. Impact tests were performed under impact energies of 10 J, 25 J and 80 J using an instrumented drop-weight machine. Contact force and displacement versus time and contact force- displacement graphs of sandwich panels were presented to determine the panel response. Through these graphs, the energy absorbing capacity of the sandwich panels was determined. The impact responses and failure modes of flat and curved sandwich panels were compared and the effect of curvature on sandwich composite panel was demonstrated. Testing has shown that the maximum contact force decrease while displacement increases with increasing of panel curvature and curved panels exhibits mixed failure mode, with cylindrical and cone cracking.

고전 적층이론에 의한 섬유금속적층판의 기계적 거동 연구 (Study on the Mechanical Behavior of Fiber Metal Laminates Using Classical Lamination Theory)

  • 노희석;최흥섭;강길호;하민수
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 춘계학술발표대회 논문집
    • /
    • pp.37-41
    • /
    • 2003
  • In this study the mechanical behaviors of fiber metal laminates (FML) such as ARALL, GLARE and CARE which are recently developed as new structural materials and known to have excellent fatigue resistant characteristics while with relatively low densities compared to the conventional aluminum materials, are considered through the classical lamination theory. The mechanical properties such as elastic moduli, thermal expansion coefficients and hygro-thermally induced residual stresses in the fiber metal laminates are obtained and compared each other. Also load carrying mechanism between metal sheets and composite layers in the FML are considered.

  • PDF

Functionalization of graphene nanoplatelets using sugar azide for graphene/epoxy nanocomposites

  • Bose, Saswata;Drzal, Lawrence T.
    • Carbon letters
    • /
    • 제16권2호
    • /
    • pp.101-106
    • /
    • 2015
  • We report a covalent functionalization of graphene nanoparticles (GnPs) employing 2,3,4-Tri-O-acetyl-${\beta}$-D-xylopyranosyl azide followed by fabrication of an epoxy/functionalized graphene nanocomposite and an evaluation of its thermo-mechanical performance. Successful functionalization of GnP was confirmed via thermal and spectroscopic study. Raman spectroscopy indicated that the functionalization was on the edge of the graphene sheets; the basal plane was not perturbed as a result of the functionalization. The epoxy/functionalized GnP composite system exhibited an increase in flexural modulus (~18%) and glass transition temperature (${\sim}10^{\circ}C$) compared to an un-functionalized GnP based epoxy composite.

고출력 전자 패키지 기판용 고열전도 h-BN/PVA 복합필름 (High Thermal Conductivity h-BN/PVA Composite Films for High Power Electronic Packaging Substrate)

  • 이성태;김치헌;김효태
    • 마이크로전자및패키징학회지
    • /
    • 제25권4호
    • /
    • pp.95-99
    • /
    • 2018
  • 최근 고집적 고출력 전자 패키지의 효율적인 열전달을 위한 기판 및 방열소재로서 절연성 고열전도 필름의 수요가 커지고 있어, 알루미나, 질화알루미늄, 질화보론, 탄소나노튜브 및 그래핀 등의 고열전도 필러소재를 사용한 고방열 복합소재에 대한 많은 연구가 이루어지고 있다. 그 중에서도 육방정 질화보론(h-BN) 나노시트가 절연성 고열전도 필러 소재로서 유력한 후보 물질로 선택되고 있다. 본 연구는 이 h-BN 나노시트와 PVA로 된 세라믹/폴리머 복합체 필름의 방열특성 향상에 관한 것이다. h-BN 나노시트는 h-BN 플레이크 원료 분말을 유기용매를 사용한 볼밀링과 초음파 처리에 의한 물리적 박리공정으로 만들었으며, 이를 사용한 h-BN/PVA 복합 필름을 제조한 결과 성형된 복합필름의 면방향과 두께방향 열전도도는 50 vol%의 필러함량에서 각각 $2.8W/m{\cdot}K$$10W/m{\cdot}K$의 높은 열전도도가 나타났다. 이 복합필름을 PVA의 유리전이온도 이상에서 일축 가압하여 h-BN 판상분말의 얼라인먼트를 향상시킴으로써 면방향 열전도도를 최대 $13.5W/m{\cdot}K$까지 증가시킬 수 있었다.

자궁 경부의 선암과 혼합된 신경내분비 소세포 암종 - 1 증례 보고 - (Composite Tumor of Adenocarcinoma and Small Cell Neuroendocrine Carcinoma of the Uterine Cervix -A Case Report-)

  • 박혜림;이용우;박영의
    • 대한세포병리학회지
    • /
    • 제1권1호
    • /
    • pp.111-120
    • /
    • 1990
  • Small cell neuroendocrine carcinoma of the uterine cervix is a distinct subtype of cervical cancer that appears analogous to oat cell carcinoma and carcinoid tumors of the lung. It has been assumed to be derived from the neural crest via argyrophilic cells in the normal endocervix. We have recently encountered a case of small cell neuroendocrine carcinoma of the uterine cervix coexisting with adenocarcinoma which was argyrophil negative. A 66-year-old multiparous woman was admitted because of vaginal bleeding for 2 months. Cervicovaginal smear revealed several scattered clusters and sheets of monotonous small cells with some peripheral palisading in the background of hemorrhage and necrosis. Radical hysterectomy specimen revealed an ulcerofungating tumor on endocervical canal which was composed of two components. Major component of the tumor was made up of monomorphic population of small oval-shaped tumor cells arranged in sheets and partly in acinar structures or trabecular fashion. Other component was adenocarcinoma, endocervical well-differentiated type. Argyrophilia was present on the Grimelius stain and immunohistochemical studies revealed diffuse positivity to neuron-specific enolase and carcinoembryonic antigen. Electron microscopic examination showed clusters of small round to oval cells, which had a few well-formed desmosomes and several membrane-bound, dense-core neurosectetory granules.

  • PDF

General equations for free vibrations of thick doubly curved sandwich panels with compressible and incompressible core using higher order shear deformation theory

  • Nasihatgozar, M.;Khalili, S.M.R.;Fard, K. Malekzadeh
    • Steel and Composite Structures
    • /
    • 제24권2호
    • /
    • pp.151-176
    • /
    • 2017
  • This paper deals with general equations of motion for free vibration analysis response of thick three-layer doubly curved sandwich panels (DCSP) under simply supported boundary conditions (BCs) using higher order shear deformation theory. In this model, the face sheets are orthotropic laminated composite that follow the first order shear deformation theory (FSDT) based on Rissners-Mindlin (RM) kinematics field. The core is made of orthotropic material and its in-plane transverse displacements are modeled using the third order of the Taylor's series extension. It provides the potentiality for considering both compressible and incompressible cores. To find these equations and boundary conditions, Hamilton's principle is used. Also, the effect of trapezoidal shape factor for cross-section of curved panel element ($1{\pm}z/R$) is considered. The natural frequency parameters of DCSP are obtained using Galerkin Method. Convergence studies are performed with the appropriate formulas in general form for three-layer sandwich plate, cylindrical and spherical shells (both deep and shallow). The influences of core stiffness, ratio of core to face sheets thickness and radii of curvatures are investigated. Finally, for the first time, an optimum range for the core to face sheet stiffness ratio by considering the existence of in-plane stress which significantly affects the natural frequencies of DCSP are presented.

Theoretical investigation on vibration frequency of sandwich plate with PFRC core and piezomagnetic face sheets under variable in-plane load

  • Arani, Ali Ghorbanpour;Maraghi, Zahra Khoddami;Ferasatmanesh, Maryam
    • Structural Engineering and Mechanics
    • /
    • 제63권1호
    • /
    • pp.65-76
    • /
    • 2017
  • This research investigated the vibration frequency of sandwich plate made of piezoelectric fiber reinforced composite core (PFRC) and face sheets of piezomagnetic materials. The effective electroelastic constants for PFRC materials are obtained by the micromechanical approach. The resting medium of sandwich plate is modeled by Pasternak foundation including normal and shear modulus. Besides, sandwich plate is subjected to linearly varying normal stresses that change by load factor. The coupled equations of motion are derived using first order shear deformation theory (FSDT) and energy method. These equations are solved by differential quadrature method (DQM) for simply supported boundary condition. A detailed numerical study is carried out based on piezoelectricity theory to indicate the significant effect of load factor, volume fraction of fibers, modulus of elastic foundation, core-to-face sheet thickness ratio and composite materials on dimensionless frequency of sandwich plate. These findings can be used to aerospace, building and automotive industries.

Electrospun Nanocomposite Fiber Mats of Zinc-Oxide Loaded Polyacrylonitrile

  • Nataraj, S.K.;Kim, B.H.;Yun, J.H.;Lee, D.H.;Aminabhavi, T.M.;Yang, K.S.
    • Carbon letters
    • /
    • 제9권2호
    • /
    • pp.108-114
    • /
    • 2008
  • We have demonstrated the feasibility of using electrospinning method to fabricate long and continuous composite nanofiber sheets of polyacrylonitrile (PAN) incorporated with zinc oxide (ZnO). Such PAN/ZnO composite nanofiber sheets represent an important step toward utilizing carbon nanofibers (CNFs) as materials to achieve remarkably enhanced physico-chemical properties. In an attempt to derive these advantages, we have used a variety of techniques such as field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and high resolution X-ray diffraction (HR-XRD) to obtain quantitative data on the materials. The CNFs produced are in the diameter range of 100 to 350 nm after carbonization at $1000^{\circ}C$. Electrical conductivity of the random CNFs was increased by increasing the concentration of ZnO. A dramatic improvement in porosity and specific surface area of the CNFs was a clear evidence of the novelty of the method used. This study indicated that the optimal ZnO concentration of 3 wt% is enough to produce CNFs having enhanced electrical and physico-chemical properties.

CFRP strengthening of steel columns subjected to eccentric compression loading

  • Keykha, Amir Hamzeh
    • Steel and Composite Structures
    • /
    • 제23권1호
    • /
    • pp.87-94
    • /
    • 2017
  • Steel structures often require strengthening due to the increasing life loads, or repair caused by corrosion or fatigue cracking. Carbon Fiber Reinforced Polymers (CFRP) is one of the materials used to strengthen steel structures. Most studies on strengthening steel structures have been carried out on steel beams and steel columns under centric compression load. No independent article, to the author's knowledge, has studied the effect of CFRP strengthening on steel columns under eccentric compression load, and it seems that there is a lack of understanding on behavior of CFRP strengthening on steel columns under eccentric compression load. However, this study explored the use of adhesively bonded CFRP flexible sheets on retrofitting square hollow section (SHS) steel columns under the eccentric compression load, using numerical investigations. Finite Element Method (FEM) was employed for modeling. To determine ultimate load of SHS steel columns, eight specimens with two types of section (Type A and B), strengthened using CFRP sheets, were analyzed under different coverage lengths, the number of layers, and the location of CFRP composites. Two specimens were analyzed without strengthening (control) to determine the increasing rate of the ultimate load in strengthened steel columns. ANSYS was used to analyze the SHS steel columns. The results showed that the CFRP composite had no similar effect on the slender and stocky SHS steel columns. The results also showed that the coverage length, the number of layers, and the location of CFRP composites were effective in increasing the ultimate load of the SHS steel columns.

Buckling analysis of sandwich beam reinforced by GPLs using various shear deformation theories

  • Hanifehlou, Sona;Mohammadimehr, Mehdi
    • Computers and Concrete
    • /
    • 제25권5호
    • /
    • pp.427-432
    • /
    • 2020
  • In this research, the buckling analysis of sandwich beam with composite reinforced by graphene platelets (GPLs) in two face sheets is investigated. Three type various porosity patterns including uniform, symmetric and asymmetric are considered through the thickness direction of the core. Also, the top and bottom face sheets layers are considered composite reinforced by GPLs/CNTs based on Halpin-Tsai micromechanics model and extended mixture rule, respectively. Based on various shear deformation theories such as Euler-Bernoulli, Timoshenko and Reddy beam theories, the governing equations of equilibrium using minimum total potential energy are obtained. It is seen that the critical buckling load decreases with an increase in the porous coefficient, because the stiffness of sandwich beam reduces. Also, it is shown that the critical buckling load for asymmetric distribution is lower than the other cases. It can see that the effect of graphene platelets on the critical buckling load is higher than carbon nanotubes. Moreover, it is seen that the difference between carbon nanotubes and graphene platelets for Reddy and Euler-Bernoulli beam theories is most and least, respectively.