• Title/Summary/Keyword: composite sheets

Search Result 312, Processing Time 0.022 seconds

Limit-current type zirconia oxygen sensor with porous diffusion layer (다공성 확산층을 이용한 한계전류형 지르코니아 산소센서)

  • Oh, Young-Jei;Lee, Chil-Hyoung
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.329-337
    • /
    • 2008
  • Simple, small and portable oxygen sensors were fabricated by tape casting technique. Yttria stabilized zirconia containing cordierite ceramics (YSZC) were used as a porous diffused layer of oxygen in pumping cell. Yttria stabilized zirconia (YSZ) solid electrolyte, YSZC porous diffusion layer and heater-patterned ceramic sheets were prepared by co- firing method. Limit current characteristics and the linear relationship of current to oxygen concentration were observed. Viscosity variation of the slurries both YSZ and YSZC showed a similar behavior, but micro pores in the fired sheet were increased with increasing of the cordierite amount. Molecular diffusion was dominated due to the formation of large pores in porous diffusion layer. The plateau range of limit current in porous-type oxygen sensor was narrow than the one of aperture-type oxygen sensor. However limit current curve was appeared in porous-type oxygen sensor even at the lower applied voltage. The plateau range of limit-current was widen as increasing the thickness of porous diffusion layer of the YSZ containing cordierite. Measuring temperature of $600{\sim}650^{\circ}C$ was recommended for limit-current oxygen sensor. Porous diffusion layer-type oxygen sensor showed faster response than the aperture-type one and was stable up to 30 days running without any crack at interface between the layers.

Development of dynamic behavior of the novel composite T-joints: Numerical and experimental

  • Mokhtari, Madjid;Shahravi, Morteza;Zabihpoor, Mahmood
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.3
    • /
    • pp.385-400
    • /
    • 2018
  • In this paper dynamic behavior (modal analysis and dynamic transient response) of a novel sandwich T-joint is numerically and experimentally investigated. An epoxy adhesive is selected for bonding purpose and making the step wise graded behavior of adhesive region. The effect of the step graded behavior of the adhesive zone on dynamic behavior of a sandwich T-joint is numerically studied. Finite element analysis (FEA) of the T-joints with carbon fiber reinforced polymer (CFRP) face-sheets is performed by ABAQUS 6.12-1 FEM code software. Modal analysis and dynamic half-sine transient response of the sandwich T-joint are presented in this paper. Two verification processes employed to verify the dynamic modeling of the manufactured sandwich panels and T-joint modeling. It has been shown that the step wise graded adhesive zone cases have changed the second natural frequency by about 5%. Also, it has been shown that the different arranges in the step wise graded adhesive zone significantly affect the maximum stresses due to transient dynamic loading by 1112% decrease in maximum peel stress and 691.9% decrease in maximum shear stress on the adhesive region.

The effects of temperature and vacancy defect on the severity of the SLGS becoming anisotropic

  • Tahouneh, Vahid;Naei, Mohammad Hasan;Mashhadi, Mahmoud Mosavi
    • Steel and Composite Structures
    • /
    • v.29 no.5
    • /
    • pp.647-657
    • /
    • 2018
  • Geometric imperfections may be created during the production process or setting borders of single-layer graphene sheets (SLGSs). Vacancy defects are an instance of geometric imperfection, so investigating the effect of these vacancies on the mechanical properties of single-layer graphene is extremely important. Since very few studies have been conducted on the structure of imperfect graphene (with the vacancy defect) as an anisotropic structure, further study of this defective structure seems imperative. Due to the vacancy defects and for the proper assessment of mechanical properties, the graphene structure should be considered anisotropic in certain states. The present study investigates the effects of site and size of vacancy defects on the mechanical properties of graphene as an anisotropic structure using the lekhnitskii interaction coefficients and Molecular Dynamic approach. The effect of temperature on the severity of the SLGS becoming anisotropic is also investigated in this study. The results reveal that the amount of temperature has a big effect on the severity of the structure getting anisotropic even for a graphene without any defects. The effect of aspect ratio, temperature and also size and site of vacancy defects on the material properties of the graphene are studied in this research work. According to the present study, using material properties of flawless graphene for imperfect structure can lead to inaccurate results.

Thermoelastic static and vibrational behaviors of nanocomposite thick cylinders reinforced with graphene

  • Moradi-Dastjerdi, Rasool;Behdinan, Kamran
    • Steel and Composite Structures
    • /
    • v.31 no.5
    • /
    • pp.529-539
    • /
    • 2019
  • Current paper deals with thermoelastic static and free vibrational behaviors of axisymmetric thick cylinders reinforced with functionally graded (FG) randomly oriented graphene subjected to internal pressure and thermal gradient loads. The heat transfer and mechanical analyses of randomly oriented graphene-reinforced nanocomposite (GRNC) cylinders are facilitated by developing a weak form mesh-free method based on moving least squares (MLS) shape functions. Furthermore, in order to estimate the material properties of GRNC with temperature dependent components, a modified Halpin-Tsai model incorporated with two efficiency parameters is utilized. It is assumed that the distributions of graphene nano-sheets are uniform and FG along the radial direction of nanocomposite cylinders. By comparing with the exact result, the accuracy of the developed method is verified. Also, the convergence of the method is successfully confirmed. Then we investigated the effects of graphene distribution and volume fraction as well as thermo-mechanical boundary conditions on the temperature distribution, static response and natural frequency of the considered FG-GRNC thick cylinders. The results disclosed that graphene distribution has significant effects on the temperature and hoop stress distributions of FG-GRNC cylinders. However, the volume fraction of graphene has stronger effect on the natural frequencies of the considered thick cylinders than its distribution.

Buckling and vibration of porous sandwich microactuator-microsensor with three-phase carbon nanotubes/fiber/polymer piezoelectric polymeric nanocomposite face sheets

  • Arani, Ali Ghorbanpour;Navi, Borhan Rousta;Mohammadimehr, Mehdi
    • Steel and Composite Structures
    • /
    • v.41 no.6
    • /
    • pp.805-820
    • /
    • 2021
  • In this research, the buckling and free vibration of three-phase carbon nanotubes/ fiber/ polymer piezoelectric nanocomposite face sheet sandwich microbeam with microsensor and micro-actuator surrounded in elastic foundation based on modified couple stress theory (MCST) is investigated. Three types of porous materials are considered for sandwich core. Higher order (Reddy) and sinusoidal shear deformation beam theories are employed for the displacement fields. Sinusoidal surface stress effects are extracted for sinusoidal shear deformation beam theory. The equations of motion are derived by Hamilton's principle and then the natural frequency and critical buckling load are obtained by Navier's type solution. The determined results are in good agreement with other literatures. The detailed numerical investigation for various parameters is performed for this microsensor-microactuator. The results reveal that the microsensor-microactuator enhanced by increasing of Skempton coefficient, carbon nanotubes diameter length to thickness ratio, small scale factor, elastic foundation, surface stress constants and reduction in porous coefficient, micro-actuator voltage and CNT weight fraction. The valuable results can be expedient for micro-electro-mechanical (MEMS) and nano-electro-mechanical (NEMS) systems.

Experimental study on RC beams externally bonded by CFRP sheets with and without end self-locking

  • Chaoyang Zhou;Yanan Yu;Chengfeng Zhou;Xuejun He;Yi Wang
    • Steel and Composite Structures
    • /
    • v.48 no.5
    • /
    • pp.599-610
    • /
    • 2023
  • To avoid debonding failure, a novel type of hybrid anchorage (HA) is proposed in this study that uses a slotted plate to lock the ends of the fiber-reinforced polymer (FRP) sheet in addition to the usual bonding over the substrate of the strengthened member. An experimental investigation was performed on three groups of RC beams, which differed from one another in either concrete strength or steel reinforcement ratio. The test results indicate that the end self-locking of the CFRP sheet can improve the failure ductility, ultimate capacity of the beams and its utilization ratio. Although intermediate debonding occurred in all the strengthened beams, it was not a fatal mode of failure for the three specimens with end anchorage. Among them, FRP rupture occurred in the beam with higher concrete strength and lower steel reinforcement ratio, whereas the other two failed by concrete crushing. The beam strengthened by HA obtained a relatively high percentage of increase in ultimate capacity when the rebar ratio or concrete strength decreased. The expressions in the literature were inspected to calculate the critical loads at intermediate debonding, FRP rupturing and concrete crushing after debonding for the strengthened beam. Then, the necessity of further research is addressed.

Investigating the deflection of GLARE and CARALL laminates under low-velocity impact test, experimentally and FEM simulation

  • Meisam Mohammadi;Mohammad Javad Ramezani
    • Steel and Composite Structures
    • /
    • v.47 no.3
    • /
    • pp.395-403
    • /
    • 2023
  • The main objective of this article is to investigate the response of different fiber metal laminates subjected to low velocity impact experimentally and numerically via finite element method (FEM). Hence, two different fiber metal laminate (FML) samples (GLARE/CARALL) are made of 7075-T6 aluminum sheets and polymeric composites reinforced by E-glass/carbon fibers. In order to study the responses to the low velocity impacts, samples are tested by drop weight machine. The projectiles are released from 1- and 1.5-meters height were the speed reaches to 4.42 and5.42 meter per second and the impact energies are measured as 6.7 and 10 Joules. In addition to experimental study, finite element simulation is done and results are compared. Finally, a detailed study on the maximum deflection, delamination and damages in laminates and geometry's effect of projectiles on the laminate response is done. Results show that maximum deflection caused by spherical projectile for GLARE samples is more apparent in comparison with the CARALL samples. Moreover, the maximum deflection of GLARE samples subjected to spherical projectile with 6.7 Joules impact energy, 127% increases in comparison with the CARALL samples in spite of different total thickness.

Optimal sensor placement of retrofitted concrete slabs with nanoparticle strips using novel DECOMAC approach

  • Ali Faghfouri;Hamidreza Vosoughifar;Seyedehzeinab Hosseininejad
    • Smart Structures and Systems
    • /
    • v.31 no.6
    • /
    • pp.545-559
    • /
    • 2023
  • Nanoparticle strips (NPS) are widely used as external reinforcers for two-way reinforced concrete slabs. However, the Structural Health Monitoring (SHM) of these slabs is a very important issue and was evaluated in this study. This study has been done analytically and numerically to optimize the placement of sensors. The properties of slabs and carbon nanotubes as composite sheets were considered isotopic and orthotropic, respectively. The nonlinear Finite Element Method (FEM) approach and suitable optimal placement of sensor approach were developed as a new MATLAB toolbox called DECOMAC by the authors of this paper. The Suitable multi-objective function was considered in optimized processes based on distributed ECOMAC method. Some common concrete slabs in construction with different aspect ratios were considered as case studies. The dimension and distance of nano strips in retrofitting process were selected according to building codes. The results of Optimal Sensor Placement (OSP) by DECOMAC algorithm on un-retrofitted and retrofitted slabs were compared. The statistical analysis according to the Mann-Whitney criteria shows that there is a significant difference between them (mean P-value = 0.61).

Free vibration analysis of trapezoidal Double Layered plates embedded with viscoelastic medium for general boundary conditions using differential quadrature method

  • S. Abdul Ameer;Abbas Hameed Abdul Hussein;Mohammed H. Mahdi;Fahmy Gad Elsaid;V. Tahouneh
    • Steel and Composite Structures
    • /
    • v.50 no.4
    • /
    • pp.429-441
    • /
    • 2024
  • This paper studies the free vibration behavior of trapezoidal shaped coupled double-layered graphene sheets (DLGS) system using first-order shear deformation theory (FSDT) and incorporating nonlocal elasticity theory. Two nanoplates are assumed to be bonded by an interlayer van der walls force and surrounded by an external kelvin-voight viscoelastic medium. The governing equations together with related boundary condition are discretized using a mapping-differential quadrature method (DQM) in the spatial domain. Then the natural frequency of the system is obtained by solving the eigen value matrix equation. The validity of the current study is evaluated by comparing its numerical results with those available in the literature and then a parametric study is thoroughly performed, concentrating on the series effects of angles and aspect ratio of GS, viscoelastic medium, and nonlocal parameter. The model is used to study the vibration of DLGS for two typical deformation modes, the in-phase and out-of-phase vibrations, which are investigated. Numerical results indicate that due to Increasing the damping parameter of the viscoelastic medium has reduced the frequency of both modes and this medium has been able to overdamped the oscillations and by increasing stiffness parameters both in-phase and out-of-phase vibration frequencies increased.

Free vibration analysis of sandwich cylindrical panel composed of graphene nanoplatelets reinforcement core integrated with Piezoelectric Face-sheets

  • Khashayar Arshadi;Mohammad Arefi
    • Steel and Composite Structures
    • /
    • v.50 no.1
    • /
    • pp.63-75
    • /
    • 2024
  • In this paper, the modified couple stress theory (MCST) and first order shear deformation theory (FSDT) are employed to investigate the free vibration and bending analyses of a three-layered micro-shell sandwiched by piezoelectric layers subjected to an applied voltage and reinforced graphene nanoplatelets (GPLs) under external and internal pressure. The micro-shell is resting on an elastic foundation modeled as Pasternak model. The mixture's rule and Halpin-Tsai model are utilized to compute the effective mechanical properties. By applying Hamilton's principle, the motion equations and associated boundary conditions are derived. Static/ dynamic results are obtained using Navier's method. The results are validated with the previously published works. The numerical results are presented to study and discuss the influences of various parameters on the natural frequencies and deflection of the micro-shell, such as applied voltage, thickness of the piezoelectric layer to radius, length to radius ratio, volume fraction and various distribution pattern of the GPLs, thickness-to-length scale parameter, and foundation coefficients for the both external and internal pressure. The main novelty of this work is simultaneous effect of graphene nanoplatelets as reinforcement and piezoelectric layers on the bending and vibration characteristics of the sandwich micro shell.