• Title/Summary/Keyword: composite sheets

Search Result 312, Processing Time 0.021 seconds

Influence of interfacial adhesive on the failure mechanisms of truss core sandwich panels under in-plane compression

  • Zarei, Mohammad J.;Hatami, Shahabeddin;Gholami, Mohammad
    • Steel and Composite Structures
    • /
    • v.44 no.4
    • /
    • pp.519-529
    • /
    • 2022
  • Sandwich structures with the superior mechanical properties such as high stiffness and strength-to-weight ratio, good thermal insulation, and high energy absorption capacity are used today in aerospace, automotive, marine, and civil engineering industries. These structures are composed of moderately stiff, thin face sheets that withstand the majority of transverse and in-plane loads, separated by a thick, lightweight core that resists shear forces. In this research, the finite element technique is used to simulate a sandwich panel with a truss core under axial compressive stress using ABAQUS software. A review of past experimental studies shows that the bondline between the core and face sheets plays a vital role in the critical failure load. Therefore, this modeling analyzes the damage initiation modes and debonding between face sheet and core by cohesive surface contact with traction-separation model. According to the results obtained from the modeling, it can be observed that the adhesive stiffness has a significant influence on the critical failure load of the specimens. To achieve the full strength of the structure as a continuum, a lower limit is obtained for the adhesive stiffness. By providing this limit stiffness between the core and the panel face sheets, sudden failure of the structure can be prevented.

Paper Properties Improvement by adding Microfibrillated Cellulose-Mineral Composites (Microfibrillated Cellulose (MFC)와 중질탄산칼슘 (GCC)로 구성된 복합충전제를 이용한 종이 물성 향상)

  • Lee, Jung Myoung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.2
    • /
    • pp.83-90
    • /
    • 2016
  • Increasing the amount of filler in paper is of high interest for paper industry while maintaining its key sheet quality properties. In this study, a MFC-GCC composite, made through a co-grinding NBSK (Northern bleached softwood kraft) pulp with a ground calcium carbonate (Intracarb 60), was used as a strength aid in paper in order to evaluate a potential cost reduction through filler increase without sacrificing paper quality. Hand-sheets were made of NBSK and/or eucalyptus pulp by using white water recirculation in a Tappi sheet former and was compared its properties without or with MFC additions at different filler levels. It was found that the MFC-GCC composite has a large surface area compared to the fiber, allowing the formation of more hydrogen bonds in the web, thus giving natural strength to the paper. Overall results are encouraging that the MFC-GCC composite allows papermaker to reduce basis weight and maintain critical sheet properties.

Electromagnetic Characteristics of Carbon Black filled Class-Fabric Composite Sandwich Structure (카본블랙이 첨가된 유리직물 복합재 샌드위치 구조의 전자기적 특성)

  • Park, Ki-Yeon;Lee, Sang-Eui;Kang, Lae-Hyong;Han, Jae-Hung;Kim, Chun-Gong;Lee, In
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.234-237
    • /
    • 2003
  • The absorption and the interference shielding of the electromagnetic wave problem have been a very important issue for commercial and military purposes. This study dealt with the simulation reflection loss for electromagnetic absorbing sandwich type structures in X-band(8.2Ghz~12.4GHz). Glass/epoxy composites containing conductive carbon blacks were used for the face sheets and styrofoams were used for the core. Their permittivities in X-band were measured using the transmission line technique. Simulation results of 3-1ayered sandwich type structures showed the reflection loss using the theory about transmission and reflection in a multi-layered medium.

  • PDF

A Study on 4 Point Bending Strength of Aircraft Composite Specimens (항공기 복합재료 적용 시편의 4점 굽힘 강도 연구)

  • Kong, Changduk;Park, Hyunbum;Lim, Seongjin
    • Journal of Aerospace System Engineering
    • /
    • v.4 no.1
    • /
    • pp.23-26
    • /
    • 2010
  • In this study, it was performed damage assesment of small scale composite aircraft developing. This aircraft adopted the sandwich structure to skin of wing. This study aims to investigate the residual strength of sandwich composites with Nomex honeycomb core and carbon fiber face sheets after the open hole damage by the experimental investigation. The 4-point bending tests were used to find the bending strength, and the open hole was applied to introduce the simulated damage on the specimen. The bending strength test results after open hole was compared with the results of no damaged specimen test. The FEM analysis is assessed via an experimental 4-point bending test.

  • PDF

Structural Design of Composite Blade and Tower for Small Wind Turbine System

  • Jang, Mingi;Lee, Sanggyu;Park, Gwanmun;Park, Hyunbum
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.1
    • /
    • pp.38-42
    • /
    • 2015
  • This work is to propose a structural design and analysis procedure for development of the low noise 1kW class small wind turbine system which will be applicable to relatively low speed region like Korea and for the domestic use. The proposed structural configuration has a sandwich composite structure with the E-glass/Epoxy face sheets and the Urethane foam core for lightness, structural stability, low manufacturing cost and easy manufacturing process. Structural analysis including load cases, stress, deformation, buckling, vibration and fatigue life was performed using the Finite Element Method, the load spectrum analysis and Miner rule. In order to evaluate the designed structure, the structural test was carried out and its test results were compared with the estimated results. Moreover Investigation on structural safety of tower was verified through structural analysis by FEM.

Electrical properties of a composite piezoelectric transducer (복합 압전 트랜스듀서의 전기적 특성)

  • 안형근;한득영
    • Electrical & Electronic Materials
    • /
    • v.9 no.1
    • /
    • pp.24-29
    • /
    • 1996
  • A composite piezoelectric ceramic transducer is fabricated with three piezoelectric ceramic disk vibrators and two sheets of thin insulator. Its equivalent circuit is derived from the Mason's model of a thickness-driven piezoelectric vibrator. When the electric input near its fundamental resonance frequency is applied to the center vibrator and the output voltages across the left and the right vibrators are connected in series to the resistor loads, the load characteristics at resonance frequencies under the various resistor loads and the frequency characteristics near the resonance frequency without load are investigated. Furthermore, symbolic expressions for input impedances, voltage ratios, resonance frequencies, and bandwidths are derived. The data calculated from those symbolic expressions are agreed well with the measurement data.

  • PDF

Structural Design on Small Scale Sandwich Composite Wind Turbine Blade

  • Seongjin Ahn;Hyunbum Park
    • International Journal of Aerospace System Engineering
    • /
    • v.10 no.2
    • /
    • pp.1-4
    • /
    • 2023
  • Even though the recent development trend of wind turbine systems has been focused on larger MW Classes, the small-scale wind turbine system has been continuously developed because it has some advantages due to easy personnel establishment and use with low cost and energy saving effect. This work is to propose a specific structural design and analysis procedure for development of a low noise 500W class small wind turbine system which will be applicable to relatively low wind speed region like Korea. The proposed structural feature has a skin-spar-foam sandwich composite structure with the E-glass/Epoxy face sheets and the Urethane foam core for lightness, structural stability, low manufacturing cost and easy manufacturing process. Moreover this type of structure has good behaviors for reduction of vibration and noise. Structural analysis including load cases, stress, deformation, buckling and vibration was performed using the Finite Element Method. In order to evaluate the designed blade structure the structural tests were done, and their test results were compared with the estimated results.

The Experimental Analysis of the PVC Foam Cored CFRP Sandwich Composite for the Mixed Mode Delamination Characteristics (복합모드 층간분리특성에 대한 PVC폼 코아 탄소섬유샌드위치 복합재의 실험적 해석)

  • Kwak, Jung Hoon;Yun, Yu Seong;Kwon, Oh Heon
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.2
    • /
    • pp.8-13
    • /
    • 2018
  • The light weight composite materials have been replacing in high performance structures. The object of this study is to examine the effects of the initial crack location about a delamination in a PVC foam cored sandwich composite that is used for the strength improvement of structures. The initial crack location and fiber laminates thickness were changed with several types. The MMB specimen was used for evaluating the fracture toughness and crack behaviors. The material used in the experiment is a commercial twill carbon prepreg in CFRP material and Airex in PVC foam core. Sandwich laminate composites are composed by PVC foam core layer between CFRP face sheets. The face sheets were fabricated as 2 types of 5 and 8 plies. The initial cracks were located in a PVC form core and the interface of upper CFRP sheet. From the results, the crack initiation was affected with the location of the initial crack inserted in the PVC foam core. Among them, the initial crack at 1/3 of the upper part of the PVC foam core was the most rapid progression. And the critical energy release rate was $0.40kJ/m^2$, which is the lowest value when the initial crack was inserted into the interface between a PVC foam core and CFRP laminated with 5 plies. Meanwhile, the highest value of $1.27kJ/m^2$ was obtained when the initial crack was located at the center line in case of the 8 plies.

Low velocity impact response and dynamic stresses of thick high order laminated composite truncated sandwich conical shell based on a new TDOF spring-mass-damper model considering structural damping

  • Azizi, A.;Khalili, S.M.R.;Fard, K. Malekzadeh
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.771-791
    • /
    • 2018
  • This paper deals with the low velocity impact response and dynamic stresses of composite sandwich truncated conical shells (STCS) with compressible or incompressible core. Impacts are assumed to occur normally over the top face-sheet and the interaction between the impactor and the structure is simulated using a new equivalent three-degree-of-freedom (TDOF) spring-mass-damper (SMD) model. The displacement fields of core and face sheets are considered by higher order and first order shear deformation theory (FSDT), respectively. Considering continuity boundary conditions between the layers, the motion equations are derived based on Hamilton's principal incorporating the curvature, in-plane stress of the core and the structural damping effects based on Kelvin-Voigt model. In order to obtain the contact force, the displacement histories and the dynamic stresses, the differential quadrature method (DQM) is used. The effects of different parameters such as number of the layers of the face sheets, boundary conditions, semi vertex angle of the cone, impact velocity of impactor, trapezoidal shape and in-plane stresses of the core are examined on the low velocity impact response of STCS. Comparison of the present results with those reported by other researchers, confirms the accuracy of the present method. Numerical results show that increasing the impact velocity of the impactor yields to increases in the maximum contact force and deflection, while the contact duration is decreased. In addition, the normal stresses induced in top layer are higher than bottom layer since the top layer is subjected to impact load. Furthermore, with considering structural damping, the contact force and dynamic deflection decrees.

Appraisal Study on Tensile Test Method of Mechanical Properties of FRP Composite Used in Strengthening RC Members (구조보강용 FRP 복합체의 역학적 특성치 분석을 위한 인장시험방법 평가 연구)

  • You, Young-Chan;Choi, Ki-Sun;Kang, In-Seok;Kim, Keung-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.73-80
    • /
    • 2008
  • Experimental study has been performed in order to construct the standard test methods and appraisal criteria by investigating the influence of specimen types(property, width, layers) and loading rate on the tensile characteristics of FRP used in strengthening RC structures. The FRP composite tested in this study are the unidirectional CFRP sheet/strip and the bidirectional GFRP sheet. Test variables consist of the various width ranging from 10mm to 25mm and number of CFRP sheets plied up to 5 layers. Test results indicated that maximum tensile strength and minimum coefficient of variation are recorded at each different width according to the fiber types and weaving directions. Also, the average tensile strengths of CFRP sheets are decreased as the number of layer of CFRP sheet are increased.