• 제목/요약/키워드: composite sheets

검색결과 312건 처리시간 0.026초

Repair of flange damage steel-concrete composite girders using CFRP sheets

  • Wang, Lianguang;Hou, Wenyu;Han, Huafeng;Huo, Junhua
    • Structural Engineering and Mechanics
    • /
    • 제55권3호
    • /
    • pp.511-523
    • /
    • 2015
  • Damaged steel-concrete composite girders can be repaired and retrofitted by epoxy-bonded carbon fiber-reinforced polymer (CFRP) sheets to the critical areas of tension flanges. This paper presents the results of a study on the behavior of damaged steel-concrete composite girders repaired with CFRP sheets under static loading. A total of seven composite girders made of I20A steel sections and 80mm-thick by 900mm-wide concrete slabs were prepared and tested. CFRP sheets and prestressed CFRP sheets were used to repair the specimens. The specimens lost the cross-sectional area of their tension flanges with 30%, 50% and 100%. The results showed that CFRP sheets had no significant effect on the yield loads of strengthened composite girders, but had significant effect on the ultimate loads. The yield loads, elastic stiffness, and ultimate bearing capacities of strengthened composite girders had been changed as a result of prestressed CFRP sheets, the utilization ratio of CFRP sheets could be effectively improved by applying prestress to CFRP sheets. Both the yield loads and ultimate bearing capacities had been changed as a result of steel beam's flange damage level and CFRP sheets could cover the girders' shortage of bearing capacity with 30% and 50% flange damage, respectively.

Relationship between Barcol hardness and flexural modulus degradation of composite sheets subjected to flexural fatigue

  • Sakin, Raif
    • Steel and Composite Structures
    • /
    • 제19권6호
    • /
    • pp.1531-1548
    • /
    • 2015
  • The aim of this study is to investigate the relationship between Barcol hardness (H) and flexural modulus (E) degradation of composite sheets subjected to flexural fatigue. The resin transfer molding (RTM) method was used to produce 3-mm-thick composite sheets with fiber volume fraction of 44%. The composite sheets were subjected to flexural fatigue tests and Barcol scale hardness measurements. After these tests, the stiffness and hardness degradations were investigated in the composite sheets that failed after around one million cycles (stage III). Flexural modulus degradation values were in the range of 0.41-0.42 with the corresponding measured hardness degradation values in the range of 0.25-0.32 for the all fatigued composite sheets. Thus, a 25% reduction in the initial hardness and a 41% reduction in the initial flexural modulus can be taken as the failure criteria. The results showed that a reasonably well-defined relationship between Barcol hardness and flexural modulus degradation in the distance range.

FeSiCr 박편/폴리머 복합시트의 전자파 흡수 특성에 미치는 자성분말 두께의 영향 (Effects of Magnetic Powder Thickness on Electromagnetic Wave Absorption Characteristics in FeSiCr Flakes/Polymer Composite Sheets)

  • 김주범;노태환
    • 대한금속재료학회지
    • /
    • 제47권12호
    • /
    • pp.866-872
    • /
    • 2009
  • The effects of magnetic powder thickness on electromagnetic wave absorption characteristics in Fe-6.5Si-0.9Cr (wt%) alloy flakes/polymer composite sheets available for quasi-microwave band have been investigated. The atomized FeSiCr powders were milled by using attritor for 12, 24, and 36 h, powder thickness changed from $40{\mu}m$ to $3{\mu}m$ upon 36 h milling. The composite sheet, including thinned magnetic flakes, exhibited higher power loss in the GHz frequency range as compared with the sheets having thick flakes. Moreover, both the complex permeability and the loss factor increased with the decrease in thickness of the alloy flakes. Therefore, the enhanced power loss property of the sheets containing thin alloy flakes was attributed to the flakes of high complex permeability, especially their imaginary part. Additionally, the complex permittivity was also increased with the reduction of flake thickness, and this behavior was considered to be helpful for improvement of the electromagnetic wave absorption characteristics in the composite sheets, including thin alloy flakes.

FeSiCr 박편/폴리머 복합 시트의 전자파 흡수 특성에 미치는 자성분말 입도의 영향 (Effects of Magnetic Powder Size on Electromagnetic Wave Absorption Characteristics in FeSiCr Flakes/Polymer Composite Sheets)

  • 노태환;김주범
    • 대한금속재료학회지
    • /
    • 제46권1호
    • /
    • pp.44-51
    • /
    • 2008
  • The effects of magnetic powder size on electromagnetic wave absorption characteristics in Fe-6.5Si-0.9Cr(wt%) alloy flakes/polymer composite sheets available for quasi-microwave band have been investigated. The composite sheet including small magnetic flakes with the size less than $26{\mu}m$ exhibited high power loss in the GHz frequency range as compared with the sheets having large alloy flakes of $45{\sim}75{\mu}m$. Moreover, both the complex permeability and the loss factor increased with the decrease in size of the alloy flakes. The large power loss of the sheets containing small magnetic flakes was attributed to the high complex permeability, especially their imaginary part. The high complex permeability of the sheets composed of small flakes was considered to be due to the highly thin shape of the flakes inducing low eddy-current loss.

Experimental and numerical analysis of composite beams strengthened by CFRP laminates in hogging moment region

  • El-Shihy, A.M.;Fawzy, H.M.;Mustafa, S.A.;El-Zohairy, A.A.
    • Steel and Composite Structures
    • /
    • 제10권3호
    • /
    • pp.281-295
    • /
    • 2010
  • An experimental and a non linear finite element investigation on the behavior of steel-concrete composite beams stiffened in hogging moment region with Carbon Fiber Reinforced Plastics (CFRP) sheets is presented in this paper. A total of five specimens were tested under two-point loads. Three of the composite beams included concrete slab while the other two beams had composite slabs. The stiffening was achieved by attaching CFRP sheets to the concrete surface at the position of negative bending moment. The suggested CFRP sheets arrangement enhanced the overall beam behavior and increased the composite beam capacity. Valuable parametric study was conducted using a three dimensional finite element model using ANSYS program. Both geometrical and material nonlinearity were included. The studied parameters included CFRP sheet arrangement, concrete strength and degree of shear connection.

Bonding and debonding behavior of FRP sheets under fatigue loading

  • Iwashita, Kentaro;Wu, Zhishen;Ishikawa, Takashi;Hamaguchi, Yasumasa;Suzuki, Toshio
    • Advanced Composite Materials
    • /
    • 제16권1호
    • /
    • pp.31-44
    • /
    • 2007
  • The purpose of this study is to improve the examining and understanding of the bonding behavior of Fiber Reinforced Polymer (FRP) sheets bonded to concrete blocks and steel plates under fatigue loading. First, a series of experimental investigations is summarized in the paper. The fatigue behavior of bonding surface between FRP sheets and concrete is finally characterized by the conducted P-S-N diagram representing the relationship among the probability of FRP debonding (P), the bond stress amplitudes (S), and the number of cycles (N) at debonding on a semi-logarithmic scale. The different debonding modes for various fracturing surface are also investigated and evaluated.

Behavior of damaged and undamaged concrete strengthened by carbon fiber composite sheets

  • Ilki, Alper;Kumbasar, Nahit
    • Structural Engineering and Mechanics
    • /
    • 제13권1호
    • /
    • pp.75-90
    • /
    • 2002
  • Many existing concrete structures suffer from low quality of concrete and inadequate confinement reinforcement. These deficiencies cause low strength and ductility. Wrapping concrete by carbon fiber reinforced polymer (CFRP) composite sheets enhances compressive strength and deformability. In this study, the effects of the thickness of the CFRP composite wraps on the behavior of concrete are investigated experimentally. Both monotonic and repeated compressive loads are considered during the tests, which are carried out on strengthened undamaged specimens, as well as the specimens, which were tested and damaged priorly and strengthened after repairing. The experimental data shows that, external confinement of concrete by CFRP composite sheets improves both compressive strength and deformability of concrete significantly as a function of the thickness of the CFRP composite wraps around concrete. Empirical equations are also proposed for compressive strength and ultimate axial deformation of FRP composite wrapped concrete. Test results available in the literature, as well as the experimental results presented in this paper, are compared with the analytical results predicted by the proposed equations.

Optimal design of a lightweight composite sandwich plate used for airplane containers

  • Al-Fatlawi, Alaa;Jarmai, Karoly;Kovacs, Gyorgy
    • Structural Engineering and Mechanics
    • /
    • 제78권5호
    • /
    • pp.611-622
    • /
    • 2021
  • Composite material-due to low density-causes weight savings, which results in lower fuel consumption of transport vehicles. The aim of the research was to change the existing base-plate of the aluminum airplane container with the composite sandwich plate in order to reduce the weight of the containers of cargo aircrafts. The newly constructed sandwich plate consists of aluminum honeycomb core and composite face-sheets. The face-sheets consist of glass or carbon or hybrid fiber layers. The orientations of the fibers in the face-sheets were 0°, 90° and ±45°. Multi-objective optimization method was elaborated for the newly constructed sandwich plates. Based on the design aim, the importance of the objective functions (weight and cost of sandwich plates) was the same (50%). During the optimization nine design constraints were considered: stiffness, deflection, facing stress, core shear stress, skin stress, plate buckling, shear crimping, skin wrinkling, intracell buckling. The design variables were core thickness and number of layers of the face-sheets. During the optimization both the Weighted Normalized Method of the Excel Solver and the Genetic Algorithm Solver of Matlab software were applied. The mechanical properties of composite face-sheets were calculated by Laminator software according to the Classical Lamination Plate Theory and Tsai-Hill failure criteria. The main added-value of the study is that the multi-objective optimization method was elaborated for the newly constructed sandwich structures. It was confirmed that the optimal new composite sandwich construction-due to weight savings and lower fuel consumption of cargo aircrafts - is more advantageous than conventional all-aluminum container.

피치로 코팅된 Nano Silicon Sheets/Graphite 음극복합소재의 전기화학적 특성 (Electrochemical Performance of Pitch coated Nano Silicon Sheets / Graphite Composite as Anode Material)

  • 이태헌;이종대
    • Korean Chemical Engineering Research
    • /
    • 제59권4호
    • /
    • pp.487-492
    • /
    • 2021
  • 본 연구에서는 피치가 코팅된 실리콘 시트/흑연 음극복합소재의 전기화학적 특성을 조사하였다. NaCl을 주형으로 하여 스토버 법 및 마그네슘 열 환원법을 통해 실리콘 시트를 제조하고, 양친성 물질인 SDBS로 흑연과 결합시켜 실리콘 시트/흑연을 합성하였다. THF를 용매로 석유계 피치가 코팅된 실리콘 시트/흑연 음극복합소재를 제조하였고, 음극복합소재의 물리적 특성은 XRD, SEM, EDS와 TGA를 통해 분석하였다. 전기화학적 특성은 LiPF6 (EC:DMC:EMC=1:1:1 vol%)의 전해액을 사용해 전지를 제조하여, 충·방전 사이클, 율속, 순환전압전류, 전기화학적 임피던스 테스트를 통해 조사하였다. 실리콘 조성이 증가함에 따라 방전 용량이 증가하였고, 장기 안정성은 감소하는 경향을 보였다. 30 wt% 실리콘 조성을 갖는 실리콘 시트/흑연 복합소재에 피치를 코팅한 음극복합소재는 1228.8 mAh/g의 높은 초기 방전 용량을 보였으며, 50사이클 이후 용량 유지율은 77%로 실리콘 시트/흑연 복합소재에 비해 안정성이 개선됨을 알 수 있었다.

FeSiCr 박편/폴리머 복합 시트의 전자파 흡수 특성에 미치는 합금 어닐링 효과 (Effects of Annealing on Electromagnetic Wave Absorption Characteristics in FeSiCr Flakes/Polymer Composite Sheets)

  • 김주범;노태환
    • 한국자기학회지
    • /
    • 제23권3호
    • /
    • pp.83-88
    • /
    • 2013
  • 두께 1 ${\mu}m$ 정도의 연자성 Fe-Si-Cr 합금 박편을 편상화 가공을 실시한 그대로 및 500과 $700^{\circ}C$에서 1시간 어닐링한 후 이를 폴리머 중에 분산시켜 준마이크로파 대역의 전자파 노이즈 억제용 복합 시트를 제조하여, 자성 합금의 열처리가 전자파 전송 손실(전력 손실)에 미치는 영향을 조사하였다. 합금 분말을 어닐링하지 않은 것이 어닐링한 분말을 사용한 경우보다 수 GHz의 주파수 대역에서 전력 손실의 크기가 증가하였다. 이 때 복소 투자율의 허수항 크기도 어닐링을 하지 않았을 때 더 큰 값을 나타내었는바 편상화 가공 상태의 자성 분말을 사용한 복합 시트가 우수한 전자파 노이즈 흡수 특성을 가지며, 이에는 그의 높은 복소 투자율의 허수항 크기가 기여하고 있는 것으로 판단되었다. 반면 편상화 시킨 합금 박편을 어닐링 한 경우에는 와전류 효과의 증대에 따라 복소 투자율이 낮아지고 따라서 전력 손실도 저하되는 것으로 생각되었다.