Browse > Article
http://dx.doi.org/10.12989/scs.2015.19.6.1531

Relationship between Barcol hardness and flexural modulus degradation of composite sheets subjected to flexural fatigue  

Sakin, Raif (Department of Machine and Metal Technologies, Edremit Vocational School of Higher Education, Balikesir University)
Publication Information
Steel and Composite Structures / v.19, no.6, 2015 , pp. 1531-1548 More about this Journal
Abstract
The aim of this study is to investigate the relationship between Barcol hardness (H) and flexural modulus (E) degradation of composite sheets subjected to flexural fatigue. The resin transfer molding (RTM) method was used to produce 3-mm-thick composite sheets with fiber volume fraction of 44%. The composite sheets were subjected to flexural fatigue tests and Barcol scale hardness measurements. After these tests, the stiffness and hardness degradations were investigated in the composite sheets that failed after around one million cycles (stage III). Flexural modulus degradation values were in the range of 0.41-0.42 with the corresponding measured hardness degradation values in the range of 0.25-0.32 for the all fatigued composite sheets. Thus, a 25% reduction in the initial hardness and a 41% reduction in the initial flexural modulus can be taken as the failure criteria. The results showed that a reasonably well-defined relationship between Barcol hardness and flexural modulus degradation in the distance range.
Keywords
glass-fiber; fatigue; hardness (H) and flexural modulus (E); degradation; hardness-stiffness relationship;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Belingardi, G. and Cavatorta, M. (2006), "Bending fatigue stiffness and strength degradation in carbon-glass/epoxy hybrid laminates: Cross-ply vs. angle-ply specimens", Int. J. Fatigue, 28(8), 815-825.   DOI
2 Belingardi, G., Cavatorta, M.P. and Frasca, C. (2006), "Bending fatigue behavior of glass-carbon/epoxy hybrid composites", Compos. Sci. Technol., 66(2), 222-232.   DOI
3 Bezazi, A.R., Mahi, A.E., Berthelot, J.-M. and Bezzazi, B. (2003), "Flexural Fatigue Behavior of Cross-Ply Laminates: An Experimental Approach", Strength Mater., 35(2), 149-161.   DOI
4 Bezazi, A., Pierce, S., Worden, K. and Harkati, E. (2007), "Fatigue life prediction of sandwich composite materials under flexural tests using a Bayesian trained artificial neural network", Int. J. Fatigue, 29(4), 738-747.   DOI
5 Caprino, G. and Giorleo, G. (1999), "Fatigue lifetime of glass fabric/epoxy composites", Compos. Part A, 30, 299-304.   DOI
6 Davies, P. and Petton, D. (1999), "An experimental study of scale effects in marine composites", Compos. Part A, 30(3), 267-275.   DOI
7 El Mahi, A., Khawar Farooq, M., Sahraoui, S. and Bezazi, A. (2004), "Modelling the flexural behaviour of sandwich composite materials under cyclic fatigue", Mater. Des., 25(3), 199-208.   DOI
8 El-Wafa, M.A.E.-W.M. (2004), Fatigue Behavior of Notched Gfr/Epoxy Composites, M.Sc. Dissertation; Zagazig University, Zagazig, Egypt.
9 Epaarachchi, J.A. and Clausen, P.D. (2003), "An empirical model for fatigue behavior prediction of glass fibre-reinforced plastic composites for various stress ratios and test frequencies", Compos. Part A, 34(4), 313-326.   DOI
10 Meththananda, I.M., Parker, S., Patel, M.P. and Braden, M. (2009), "The relationship between Shore hardness of elastomeric dental materials and Young's modulus", Dent. Mater., 25(8), 956-959.   DOI
11 Muthukumar, T., Aravinthan, A., Lakshmi, K., Venkatesan, R., Vedaprakash, L. and Doble, M. (2011), "Fouling and stability of polymers and composites in marine environment", Int. Biodeterior. Biodegrad., 65(2), 276-284.   DOI
12 Natarajan, V. (2005), "Fatigue response of fabric-reinforced polymeric composites", J. Compos. Mater., 39(17), 1541-1559.   DOI
13 Paepegem, W.V. and Degrieck, J. (2002), "A new coupled approach of residual stiffness and strength for fatigue of fibre-reinforced composites", Int. J. Fatigue, 24(7), 747-762.   DOI
14 Philippidis, T.P. and Vassilopoulos, A.P. (1999), "Fatigue of composite laminates under off-axis loading", Int. J. Fatigue, 21(3), 253-262.   DOI
15 Poursartip, A. and Beaumont, P.W.R. (1983), A Damage Approach to the Fatigue of Composites, In: (Z. Hashin and C.T. Herakovich Eds.), Mechanics of Composite Materials: Recent Advances, Elsevier Inc., pp. 449-456, UK.
16 Sakin, R. and Ay, I. (2008), "Statistical analysis of bending fatigue life data using Weibull distribution in glass-fiber reinforced polyester composites", Mater. Des., 29(6), 1170-1181.   DOI
17 Sakin, R., Ay, I. and Yaman, R. (2008), "An investigation of bending fatigue behavior for glass-fiber reinforced polyester composite materials", Mater. Des., 29(1), 212-217.   DOI
18 ASTM-D2583 (2007), Indentation Hardness of Rigid Plastics by Means of a Barcol Impressor, American Society for Testing and Materials.
19 Abd-Allah, M.H., Abdint, E.M., Selmy, A.I. and Khashaba, U.A. (1997), "Effect of mean stress on fatigue behaviour of GFRP pultruded rod composites", Compos. Part A, 28A(1), 87-91.
20 ASTM-D671 (1993), Flexural Fatigue of Plastics by Constant-Amplitude-of-Force.
21 ASTM-D790 (2010), Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, American Society for Testing and Materials.
22 ASTM-D7264/D7264M (2007), Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials, American Society for Testing and Materials.
23 ASTM-D3039/D3039M (2008), Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, American Society for Testing and Materials.
24 Ay, I., Sakin, R. and Okoldan, G. (2008), "An improved design of apparatus for multi-specimen bending fatigue and fatigue behaviour for laminated composites", Mater. Des., 29(2), 397-402.   DOI
25 Bao, Y.W., Wang, W. and Zhou, Y.C. (2004), "Investigation of the relationship between elastic modulus and hardness based on depth-sensing indentation measurements", Acta Mater., 52(18), 5397-5404.   DOI
26 Becenen, N., Eker, B. and Sahin, M. (2010), "Mechanical properties of plastic matrix composite materials used in tractor bonnets", J. Reinf. Plast. Compos., 29(24), 3637-3644.   DOI
27 Keller, T., Tirelli, T. and Zhou, A. (2005), "Tensile fatigue performance of pultruded glass fiber reinforced polymer profiles", Compos. Struct., 68(2), 235-245.   DOI
28 Goeij, W.C.d., van Tooren, M.J.L. and Beukers, A. (1999), "Implementation of bending-torsion coupling in the design of a wind-turbine rotor-blade", Appl. Energy, 63(3), 191-207.   DOI
29 Jha, K.N. (2012), Development of a Small Wind Power Generation Facility, M.Sc. Dissertation; Jadavpur University, Kolkata, India.
30 Kar, N.K., Barjasteh, E., Hu, Y. and Nutt, S.R. (2011), "Bending fatigue of hybrid composite rods", Compos. Part A, 42(3), 328-336.   DOI
31 Kensche, C. (2006), "Fatigue of composites for wind turbines", Int. J. Fatigue, 28(10), 1363-1374.   DOI
32 Khan, Z., Al-Sulaiman, F.A., Farooqi, J.K. and Younas, M. (2001), "Fatigue life predictions in woven carbon fabric/polyester composites based on modulus degradation", J. Reinf. Plast. Compos., 20(5), 377-398.   DOI
33 Koricho, E.G., Belingardi, G. and Beyene, A.T. (2014), "Bending fatigue behavior of twill fabric E-glass/epoxy composite", Compos. Struct., 111, 169-178.   DOI
34 Kumar, S., Roy, N. and Ganguli, R. (2007), "Monitoring low cycle fatigue damage in turbine blade using vibration characteristics", Mech. Syst. Sig. Process., 21(1), 480-501.   DOI
35 Mayer, R.M. (1996), Design of Composite Structures Against Fatigue, Design of Composite Structures Against Fatigue, Great Britain, Antony Rowe Ltd., Effects of Environment, pp. 72-73.
36 Xu, H.H.K., Smith, D.T., Schumacher, G.E., Eichmiller, F.C. and Antonucci, J.M. (2000), "Indentation modulus and hardness of whisker-reinforced heat-cured dental resin composites", Dent. Mater., 16(4), 248-254.   DOI
37 Selmy, A. I., Azab, N.A. and Abd El-baky, M.A. (2013), "Flexural fatigue characteristics of two different types of glass fiber/epoxy polymeric composite laminates with statistical analysis", Compos. Part B, 45(1), 518-527.   DOI
38 TS-EN-59 (1996), Glass Fiber Reinforced Plastics - The Measurement of Hardness with Barcol Hardness Device (934-1), TS-EN-59, Turkish Standards Institute (TSE), Ankara, Turkey.
39 Vavouliotis, A., Paipetis, A. and Kostopoulos, V. (2011), "On the fatigue life prediction of CFRP laminates using the Electrical Resistance Change method", Compos. Sci. Technol., 71(5), 630-642.   DOI