• 제목/요약/키워드: composite sandwich structures

검색결과 310건 처리시간 0.028초

Multi-objective geometry optimization of composite sandwich shielding structure subjected to underwater shock waves

  • Zhou, Hao;Guo, Rui;Jiang, Wei;Liu, Rongzhong;Song, Pu
    • Steel and Composite Structures
    • /
    • 제44권2호
    • /
    • pp.211-224
    • /
    • 2022
  • Multi-objective optimization was conducted to obtain the optimal configuration of a composite sandwich structure with honeycomb-foam hybrid core subjected to underwater shock waves, which can fulfill the demand for light weight and energy efficient design of structures against underwater blast. Effects of structural parameters on the dynamic response of the sandwich structures subjected to underwater shock waves were analyzed numerically, from which the correlations of different parameters to the dynamic response were determined. Multi-objective optimization of the structure subjected to underwater shock waves of which the initial pressure is 30 MPa was conducted based on surrogate modelling method and genetic algorithm. Moreover, optimization results of the sandwich structure subjected to underwater shock waves with different initial pressures were compared. The research can guide the optimal design of composite sandwich structures subjected to underwater shock waves.

Higher order static analysis of truncated conical sandwich panels with flexible cores

  • Fard, Keramat Malekzadeh
    • Steel and Composite Structures
    • /
    • 제19권6호
    • /
    • pp.1333-1354
    • /
    • 2015
  • A higher order analytical solution for static analysis of a truncated conical composite sandwich panel subjected to different loading conditions was presented in this paper which was based on a new improved higher order sandwich panel theory. Bending analysis of sandwich structures with flexible cores subjected to concentrated load, uniform distributed load on a patch, harmonic and uniform distributed loads on the top and/or bottom face sheet of the sandwich structure was also investigated. For the first time, bending analysis of truncated conical composite sandwich panels with flexible cores was performed. The governing equations were derived by principle of minimum potential energy. The first order shear deformation theory was used for the composite face sheets and for the core while assuming a polynomial description of the displacement fields. Also, the in-plane hoop stresses of the core were considered. In order to assure accuracy of the present formulations, convergence of the results was examined. Effects of types of boundary conditions, types of applied loads, conical angles and fiber angles on bending analysis of truncated conical composite sandwich panels were studied. As, there is no research on higher order bending analysis of conical sandwich panels with flexible cores, the results were validated by ABAQUS FE code. The present approach can be linked with the standard optimization programs and it can be used in the iteration process of the structural optimization. The proposed approach facilitates investigation of the effect of physical and geometrical parameters on the bending response of sandwich composite structures.

하이브리드 샌드위치 복합재 초저상버스 구조물의 파손 평가 연구 (A Study on Failure Evaluation of Korean Low Floor Bus Structures Made of Hybrid Sandwich Composite)

  • 이재열;신광복;이상진
    • 한국자동차공학회논문집
    • /
    • 제15권6호
    • /
    • pp.50-61
    • /
    • 2007
  • The structural stiffness, strength and stability on the bodyshell and floor structures of the Korean Low Floor Bus composed of laminate, sandwich panels and metal reinforced frame were evaluated. The laminate composite panel and facesheet of sandwich panel were made of WR580/NF4000 glass fabric/epoxy laminate, while aluminum honeycomb or balsa was applied to the core materials of the sandwich panel. A finite element analysis was used to verify the basic design requirements of the bodyshell and the floor structure. The use of aluminum reinforced frame and honeycomb core was beneficial for weight saving and structural performance. The symmetry of the outer and inner facesheet thickness of sandwich panels did not affect the structural integrity. The structural strength of the panels was evaluated using Von-Mises criterion for metal structures and total laminate approach criterion for composite structures. All stress component of the bodyshell and floor structures were safely located below the failure stresses. The total laminate approach is recommended to predict the failure of hybrid sandwich composite structures at the stage of the basic design.

Thermal Characteristics of Hybrid Insert for Carbon Composite Satellite Structures

  • Lim, Jun Woo
    • Composites Research
    • /
    • 제28권4호
    • /
    • pp.162-167
    • /
    • 2015
  • Composite sandwich structures are widely employed in various applications, due to their high specific stiffness and specific bending strength compared to solid panels. Lately, for that reason, the advanced composite sandwich structures are employed in satellite structures: materials should be as light as possible with the highest attainable performance. This study is majorly focused on inserts employed to the composite sandwich satellite structures. A new hybrid insert design was developed in precedent study to reduce the mass of the sandwich structure since the mass of the satellite structure is related to high launching cost [1]. In this study, the thermal characteristics and behavior of the precedently developed hybrid insert with carbon composite reinforcing web and the conventional partial insert were numerically investigated.

충격 하중을 받는 폼 코어 샌드위치 빔의 파괴 모드 연구 (Failure modes of foam core sandwich beams under impact loads)

  • 임태성;이창섭;이대길
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 춘계학술발표대회 논문집
    • /
    • pp.135-138
    • /
    • 2003
  • Recently, sandwich structures have been widely employed in load bearing structures due to their high specific stiffness and high specific strength. Some sandwich structures are subjected to not only static loads but also impact loads which might induce failure of structures at far less load than expected. Since sandwich structures can fail in various modes, estimation of the impact energy absorption is difficult. In this work, the impact failure modes and the impact energy absorption characteristics of the sandwich beams were predicted by the FE analysis and confirmed by the impact test. From the analytic and experimental results, the impact failure mode map was constructed with respect to non-dimensional parameters.

  • PDF

폼 코어 샌드위치 구조물에서 복합재료 스킨의 이방성 특성이 전자기파 투과 특성에 미치는 영향에 관한 연구 (Effects of Anisotropic Properties of Composite Skins on Electromagnetic Wave Propagation in the Foam Core Sandwich Structures)

  • 신현수;전흥재
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.234-237
    • /
    • 2001
  • In this study, efforts were made to understand the propagation of electromagnetic wave through the foam core sandwich structure by the analytical model. Foam core sandwich structure is composed of glass/epoxy composite skins and foam core. Transmittance and reflectance of the arbitrary linearly polarized incident TEM waves through the unidirectional composites, foam and foam core sandwich structures were determined as functions of thickness, fiber orientation of composites, incident angle and polarization angle by the analytical model. From the results of the analysis, the general tendency of transmittance and reflectance of electromagnetic wave through composites, foam and foam core sandwich structures was obtained.

  • PDF

적층된 복합 및 샌드위치 판 구조의 자유진동 해석을 위한 EAS 고체 유한요소 (EAS Solid Element for Free Vibration Analysis of Laminated Composite and Sandwich Plate Structures)

  • 박대용;노명현;이상열
    • 복합신소재구조학회 논문집
    • /
    • 제3권3호
    • /
    • pp.22-30
    • /
    • 2012
  • This study deals with an enhanced assumed strain (EAS) three-dimensional element for free vibration analysis of laminated composite and sandwich structures. The three-dimensional finite element (FE) formulation based on the EAS method for composite structures shows excellence from the standpoints of computational efficiency, especially for distorted element shapes. Using the EAS FE formulation developed for this study, the effects of side-to-thickness ratios, aspect ratios and ply orientations on the natural frequency are studied and compared with the available elasticity solutions and other plate theories. The numerical results obtained are in good agreement with those reported by other investigators. The new approach works well for the numerical experiments tested, especially for complex structures such as sandwich plates with laminated composite faces.

다적층 복합면재를 갖는 비등방성 샌드위치판의 휨해석 (Bending Analysis of Anisotropic Sandwich Plates with Multi-layered Laminated Composite faces)

  • 지효선
    • 복합신소재구조학회 논문집
    • /
    • 제3권4호
    • /
    • pp.17-26
    • /
    • 2012
  • This study presents a governing equations of bending behavior of anisotropic sandwich plates with multi-layered laminated composite faces. Based on zig-zag models for through thickness deformations, the shear deformation of composite faces is included. All edges of plate are assumed to be simply supported. Results of the bending analysis under lateral loads are presented for the influence of various lay up sequences of antisymmetric angle-ply laminated faces. The accuracy of the approach is ascertained by comparing solutions from the sandwich plates theory with composite faces to the laminated plates theory. Since the present analysis considers the bending stiffness of the core and also the transverse shear deformations of the laminated faces, the proposed method showed higher than that calculated according to the general laminated plates theory. The information presented might be useful to design sandwich plates structure with polymer matrix composite faces.

Ultimate strength behavior of steel-concrete-steel sandwich beams with ultra-lightweight cement composite, Part 2: Finite element analysis

  • Yan, Jia-Bao;Liew, J.Y. Richard;Zhang, Min-Hong
    • Steel and Composite Structures
    • /
    • 제18권4호
    • /
    • pp.1001-1021
    • /
    • 2015
  • Ultra-lightweight cement composite (ULCC) with a compressive strength of 60 MPa and density of $1,450kg/m^3$ has been developed and used in the steel-concrete-steel (SCS) sandwich structures. This paper investigates the structural performances of SCS sandwich composite beams with ULCC as filled material. Overlapped headed shear studs were used to provide shear and tensile bond between the face plate and the lightweight core. Three-dimensional nonlinear finite element (FE) model was developed for the ultimate strength analysis of such SCS sandwich composite beams. The accuracy of the FE analysis was established by comparing the predicted results with the quasi-static tests on the SCS sandwich beams. The FE model was also applied to the nonlinear analysis on curved SCS sandwich beam and shells and the SCS sandwich beams with J-hook connectors and different concrete core including ULCC, lightweight concrete (LWC) and normal weight concrete (NWC). Validations were also carried out to check the accuracy of the FE analysis on the SCS sandwich beams with J-hook connectors and curved SCS sandwich structure. Finally, recommended FE analysis procedures were given.

Ultimate strength behavior of steel-concrete-steel sandwich beams with ultra-lightweight cement composite, Part 1: Experimental and analytical study

  • Yan, Jia-Bao;Liew, J.Y. Richard;Zhang, Min-Hong;Wang, Junyan
    • Steel and Composite Structures
    • /
    • 제17권6호
    • /
    • pp.907-927
    • /
    • 2014
  • Ultra-lightweight cement composite (ULCC) with a compressive strength of 60 MPa and density of $1450kg/m^3$ has been developed and used in the steel-concrete-steel (SCS) sandwich structures. ULCC was adopted as the core material in the SCS sandwich composite beams to reduce the overall structural weight. Headed shear studs working in pairs with overlapped lengths were used to achieve composite action between the core material and steel face plates. Nine quasi-static tests on this type of SCS sandwich composite beams were carried out to evaluate their ultimate strength performances. Different parameters influencing the ultimate strength of the SCS sandwich composite beams were studied and discussed. Design equations were developed to predict the ultimate resistance of the cross section due to pure bending, pure shear and combined action between shear and moment. Effective stiffness of the sandwich composite beam section is also derived to predict the elastic deflection under service load. Finally, the design equations were validated by the test results.