• Title/Summary/Keyword: composite pipes

Search Result 116, Processing Time 0.025 seconds

Applications of Fiber Bragg Grating Sensor Technology (FBG 센서 기술의 응용 사례)

  • Kang Dong-Hoon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.3-9
    • /
    • 2006
  • Among many fabrication methods of composite materials, filament winding is the most effective method for fabricating axis-symmetric structures such as pressure tanks and pipes. Filament wound pressure tanks are under high internal pressure during the operation and it has the complexity in damage mechanisms and failure modes. Fiber optic sensors, especially FBG sensors can be easily embedded into the composite structures contrary to conventional electric strain gages (ESGs). In addition, many FBG sensors can be multiplexed in single optical fiber using wavelength division multiplexing (WDM) techniques. In this paper, we fabricated several filament wound pressure tanks with embedded FBG sensors and conducted some kinds of experiments such as an impact test, a bending test, and a thermal cycling test. From the experimental results, it was successfully demonstrated that FBG sensors are very appropriate to composite structures fabricated by filament winding process even though they are embedded into composites by multiplexing.

  • PDF

Performance Test and Development of the Composite Heat Pipe with Rotating and Static Heat Pipe (회전.비회전 복합 히트파이프 개발과 성능 시험)

  • Lee, Y.S.;Jang, Y.S.
    • Solar Energy
    • /
    • v.18 no.4
    • /
    • pp.101-110
    • /
    • 1998
  • The purpose of this research is to study the charateristics and manufacture of a composite heat pipe system with rotational and static pipe. A composite heat pipe system were tested to obtain the relationship between the expansion injector and auxiliary expansion for the motion of the working fluid by the experimental results. In addition the heat transport characteristics were found based on wall temperature of rotor, expansion injector, storage tank and vapor temperature. Water is used as working fluid of heat pipes. As the results of experiments, the composite heat pipe was operated for long times, 10 hour above with various rotational speed in performance. There were a few unexpected data by the capillary pumped loop at small working fluid, but as a whole the testing was successful.

  • PDF

Prediction of Ring Deflection GRP Pipe Buried Underground (지중매설 GRP 관의 관변형 예측)

  • Kim, Sun-Hee;Lee, Young-Geun;Joo, Hyung-Jung;Jung, Nam-Jin;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.3
    • /
    • pp.38-44
    • /
    • 2013
  • Glass fiber reinforced plastic (GRP) pipes buried underground are attractive for use in harsh environments, such as for the collection and transmission of liquids which are abrasive and/or corrosive. In this paper, we present the result of investigation pertaining to the structural behavior of GRP flexible pipes buried underground. In the investigation of structural behavior such as a ring deflection, experimental and analytical studies are conducted. In addition, vertical ring deflection is measured by the field test and finite element analysis (FEA) is also conducted to simulate behavior of GRP pipe buried underground. Based on the results from the finite element analyses considering soil-pipe interaction the vertical ring deflection behavior of buried GRP pipe is predicted. In addition, analytical and experimental results are compared and discussed.

Mathematical modeling of concrete pipes reinforced with CNTs conveying fluid for vibration and stability analyses

  • Nouri, Alireza Zamani
    • Computers and Concrete
    • /
    • v.19 no.3
    • /
    • pp.325-331
    • /
    • 2017
  • In this study, vibration and stability of concrete pipes reinforced with carbon nanotubes (CNTs) conveying fluid are presented. Due to the existence of CNTs, the structure is subjected to magnetic field. The radial fore induced with fluid is calculated using Navier-Stokes equations. Characteristics of the equivalent composite are determined using Mori-Tanaka model. The concrete pipe is simulated with classical cylindrical shell model. Employing energy method and Hamilton's principal, the motion equations are derived. Frequency and critical fluid velocity of structure are obtained analytically based on Navier method for simply supported boundary conditions at both ends of the pipe. The effects of fluid, volume percent of CNTs, magnetic field and geometrical parameters are shown on the frequency and critical fluid velocity of system. Results show that with increasing volume percent of CNTs, the frequency and critical fluid velocity of concrete pipe are increased.

Heated Tool Bonding of Plastic Pipes

  • Troughton, Mike;Wermelinger, Joerg;Choi, Sunwoong
    • Journal of Adhesion and Interface
    • /
    • v.21 no.1
    • /
    • pp.1-5
    • /
    • 2020
  • Heated tool joining is a popular method for joining parts made from plastics and composite materials. The method is commonly known as butt fusion in the plastic pipe industry and this paper provides a short introduction to the basics of producing a good butt fusion joint. The function of each of the essential parts of the butt fusion equipment is described followed by a presentation of the important parameters of the bonding process in reference to a well-established interfacial pressure versus time curve. The butt fusion procedure is then outlined with good practices that detail the preparation of equipment and pipes to be joined as well as the fusion joining process.

Development of Lining-Board System Using Light-Weight GFRP Panels for Sewer-Pipe Construction (경량 GFRP 패널을 이용한 하수관거공사용 복공 가시설 시스템의 개발)

  • Park, Sin-Zeon;Hong, Kee-Jeung
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.3
    • /
    • pp.23-31
    • /
    • 2014
  • Recently, sewer-pipe constructions replacing deteriorated pipes are currently underway in the downtown area. To resolve many problems in the conventional method of open-cut construction, lining-board system using light-weight GFRP panels is developed. The pultruded GFRP panels can be successfully used for the developed lining-board system as temporary decks and retaining walls in virtue of light weight, high strength and high durability. In this paper, the structural safety and serviceability of the lining-board system are examined through FE analyses and experiments. Further more, a field application of the lining-board system is presented. The field application shows that quality and environment of construction can be significantly improved.

Postbuckling analysis of laminated composite shells under shear loads

  • Jung, Woo-Young;Han, Sung-Cheon;Lee, Won-Hong;Park, Weon-Tae
    • Steel and Composite Structures
    • /
    • v.21 no.2
    • /
    • pp.373-394
    • /
    • 2016
  • The postbuckling behavior of laminated composite plates and shells, subjected to various shear loadings, is presented, using a modified 8-ANS method. The finite element, based on a modified first-order shear deformation theory, is further improved by the combined use of assumed natural strain method. We analyze the influence of the shell element with the various location and number of enhanced membrane and shear interpolation. Using the assumed natural strain method with proper interpolation functions, the present shell element generates neither membrane nor shear locking behavior even when full integration is used in the formulation. The effects of various types of lay-ups, materials and number of layers on initial buckling and postbuckling response of the laminated composite plates and shells for various shear loading have been discussed. In addition, the effect of direction of shear load on the postbuckling behavior is studied. Numerical results and comparisons of the present results with those found in the literature for typical benchmark problems involving symmetric cross-ply laminated composites are found to be excellent and show the validity of the developed finite element model. The study is relevant to the simulation of barrels, pipes, wing surfaces, aircrafts, rockets and missile structures subjected to intense complex loading.

Numerical evaluation of buried composite and steel pipe structures under the effects of gravity

  • Toh, William;Tan, Long Bin;Tse, Kwong Ming;Raju, Karthikayen;Lee, Heow Pueh;Tan, Vincent Beng Chye
    • Steel and Composite Structures
    • /
    • v.26 no.1
    • /
    • pp.55-66
    • /
    • 2018
  • In this paper, the response of an underground fibreglass reinforced plastic (FRP) composite pipe system subjected to realistic loading scenarios that may be experienced by an actual buried pipeline is investigated. The model replicates an arbitrary site with a length of buried pipeline, passing through a $90^{\circ}$ bend and into a valve pit. Various loading conditions, which include effects of pipe pressurization, differences in response between stainless steel and fibreglass composite pipes and severe loss of bed-soil support are studied. In addition to pipe response, the resulting soil stresses and ground settlement are also analysed. Furthermore, the locations of potential leakage and burst have also been identified by evaluating the contact pressures at the joints and by comparing stresses to the pipe hoop and axial failure strengths.

Development of Eco-friendly Basalt Fiber-reinforced Furan-based Composite Material with Improved Fire and Flame Retardants for Shipbuilding and Offshore Pipe Insulation Cover (조선해양 파이프 단열재 커버 적용을 위한 내화/난연 성능을 갖는 친환경 바잘트섬유 강화 퓨란계 복합재료 개발 연구)

  • Kwon, Dong-Jun;Seo, Hyoung-Seock
    • Composites Research
    • /
    • v.34 no.1
    • /
    • pp.57-62
    • /
    • 2021
  • As interest in the eco-friendly ships and lightweight equipment is increasing in the shipbuilding and marine industry, composite materials are applied to equipment such as pipes. In this study, a basalt fiber reinforced furan composite (BFC), an eco-friendly material, was manufactured to apply the pipe insulation cover that requires environment-friendly and heat/flame retardant performance. An optimization study of post-curing conditions of BFC was conducted, and experiments and analysis were performed on mechanical strength, heat/flame retardant properties, and affinity properties. Finally, as a result of the study BFC material is proved to be a good candidate to apply pipe insulation cover.

Analysis of critical fluid velocity and heat transfer in temperature-dependent nanocomposite pipes conveying nanofluid subjected to heat generation, conduction, convection and magnetic field

  • Fakhar, Mohammad Hosein;Fakhar, Ahmad;Tabatabaei, Hamidreza
    • Steel and Composite Structures
    • /
    • v.30 no.3
    • /
    • pp.281-292
    • /
    • 2019
  • In this paper, analysis of critical fluid velocity and heat transfer in the nanocomposite pipes conveying nanofluid is presented. The pipe is reinforced by carbon nanotubes (CNTs) and the fluid is mixed by $AL_2O_3$ nanoparticles. The material properties of the nanocomposite pipe and nanofluid are considered temperature-dependent and the structure is subjected to magnetic field. The forces of fluid viscosity and turbulent pressure are obtained using momentum equations of fluid. Based on energy balance, the convection of inner and outer fluids, conduction of pipe and heat generation are considered. For mathematical modeling of the nanocomposite pipes, the first order shear deformation theory (FSDT) and energy method are used. Utilizing the Lagrange method, the coupled pipe-nanofluid motion equations are derived. Applying a semi-analytical method, the motion equations are solved for obtaining the critical fluid velocity and critical Reynolds and Nusselt numbers. The effects of CNTs volume percent, $AL_2O_3$ nanoparticles volume percent, length to radius ratio of the pipe and shell surface roughness were shown on the critical fluid velocity, critical Reynolds and Nusselt numbers. The results are validated with other published work which shows the accuracy of obtained results of this work. Numerical results indicate that for heat generation of $Q=10MW/m^3$, adding 6% $AL_2O_3$ nanoparticles to the fluid increases 20% the critical fluid velocity and 15% the Nusselt number which can be useful for heat exchangers.