• Title/Summary/Keyword: composite modeling

Search Result 798, Processing Time 0.028 seconds

Development of Program for Modeling of Cross Section of Composite Rotor Blade (복합재료 로터 블레이드 단면 모델링 프로그램 개발)

  • Do, Hyung-Soo;Cho, Jin-Yeon;Park, Il-Ju;Jung, Sung-Nam;Kim, Tae-Joo;Kim, Do-Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.261-268
    • /
    • 2011
  • Generally, modeling procedure of cross section of composite rotor blade is complicated and time-consuming, because it is made up of various stiffeners and multiple layers of composite materials. For efficient modeling of cross section of composite rotor blade, a modeling program so called KSec2D, which provides a user friendly GUI, is developed by using a 2D modeling algorithm based on set operation. By the developed program KSec2D, a modeling of complicated cross section of rotor blade is carried out. Through the demonstration, the usefulness of developed program in modeling procedure of cross section of composite rotor blade is verified.

On the Organization of Object-Oriented Model Bases for Structured Modeling (구조적 모델링을 위한 객체지향적 모델베이스 조직화)

  • 정대율
    • The Journal of Information Systems
    • /
    • v.5
    • /
    • pp.149-173
    • /
    • 1996
  • This paper focus on the development of object-oriented model bases for Structured Modeling. For the model base organization, object modeling techniques and model typing concept which is similar to data typing concept are used. Structured modeling formalizes the notion of a definitional system as a way of dscribing models. From the object-oriented concept, a structured model can be represented as follows. Each group of similar elements(genus) is represented by a composite class. Other type of genera can be represented in a similar manner. This hierarchical class composition gives rise to an acyclic class-composition graph which corresponds with the genus graph of structured model. Nodes in this graph are instantiated to represent the elemental graph for a specific model. Taking this class composition process one step further, we aggregate the classes into higher-level composite classes which would correspond to the structured modeling notion of a module. Finally, the model itself is then represented by a composite class having attributes each of whose domain is a composite class representing one of the modules. The resulting class-composition graph represent the modular tree of the structured.

  • PDF

Stress Function-Based Interlaminar Stress Analysis of Composite Laminates under Complex Loading Conditions (응력함수에 기초한 복합 하중하의 복합재 적층판의 층간응력 해석)

  • Kim, H.S.;Kim, J.Y.;Kim, J.G.
    • Journal of Power System Engineering
    • /
    • v.14 no.3
    • /
    • pp.52-57
    • /
    • 2010
  • Interlaminar stresses near the free edges of composite laminates have been analyzed considering wall effects. Interface modeling of bonding layer was introduced to explain the wall effect. Using Lekhnitskii stress functions and the principle of complementary virtual work, the interlaminar stresses were obtained, which satisfied the traction free boundary conditions not only at the free edges, but also at the top and bottom surfaces of laminates. The interface modeling provides not singular stresses but concentrated finite interlaminar stresses. The significant amount of reductions of stresses at the free edge are observed compared to the results without interface modeling. The real stress state can be predicted accurately and the results demonstrate the usefulness of the proposed interface modeling for the strength design of composite laminates.

Layup Optimization of Composite Laminates with Free Edge Considering Bounded Uncertainty (물성치의 불확실성을 고려한 자유단이 있는 복합재료 적층평판의 최적화)

  • 조맹효;이승윤
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.155-158
    • /
    • 2001
  • The layup optimization by genetic algorithm (GA) for the strength of laminated composites with free-edge is presented. For the calculation of interlaminar stresses of composite laminates with free edges, extended Kantorovich method is applied. In the formulation of GA, repair strategy is adopted for the satisfaction of given constraints. In order to consider the bounded uncertainty of material properties, convex modeling is used. Results of GA optimization with scattered properties are compared with those of optimization with nominal properties. The GA combined with convex modeling can work as a practical tool for light weight design of laminated composite structures since uncertainties are always encountered in composite materials.

  • PDF

Improved Equivalent Beam Element Modeling Technique for Large Scale Wind-Turbine Composite Blade (대형 풍력발전용 복합재료 블레이드의 개선된 등가 모델링 기법)

  • Kim, Dong-Hyun;Park, Hyo-Geun;Kim, Dong-Man
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.4
    • /
    • pp.32-37
    • /
    • 2008
  • In this study, we have introduced an improved equivalent modeling technique for large scale composite wind-turbine blade. Conventional or general equivalent modeling procedure may give critical error in the analysis results because of geometric coupling effects. For the analyses of structural vibration and aeroelastic problems, the accuracy of equivalent structural models is very important since it can have high numerical efficiency and various practical applications. Three-dimensional realistic composite wind-turbine blade model is practically considered for numerical study. In order to validate the effect of the mass and the stiffness of the equivalent beam model, comparison study based on the natural vibration analysis has been conducted, and the accuracy levels of the conventional and modified equivalent modeling techniques are presented.

Transverse Flow and Process Modeling on the Polymer Composite with 3-Dimensionally Stitched Woven Fabric

  • Lee, Geon-Woong;Lee, Sang-Soo;Park, Min;Kim, Junkyung;Soonho Lim
    • Macromolecular Research
    • /
    • v.10 no.4
    • /
    • pp.194-203
    • /
    • 2002
  • In resin infusion process(RIP), the fiber and the resin are in contact with each other for an impregnation step and often results in flow-induced defects such as poor fiber wetting and void formation. Resin flow characteristics in transverse direction and process modeling for woven fabric were studied, and the process modeling was applied to the manufacturing of hybrid composite materials. This study also considered the compressibility of woven fabrics in a series of compression force, and it was fitted well to an elastic model equation. Void formation was varied with the processing conditions in the stage of manufacturing composites using RIP. It was concluded from this study that proper combination of pressure build-up and dynamic heating condition makes important factor for flow-induced composite processing.

Measurement-based Estimation of the Composite Load Model Parameters

  • Kim, Byoung-Ho;Kim, Hong-Rae
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.845-851
    • /
    • 2012
  • Power system loads have a significant impact on a system. Although it is difficult to precisely describe loads in a mathematical model, accurately modeling them is important for a system analysis. The traditional load modeling method is based on the load components of a bus. Recently, the load modeling method based on measurements from a system has been introduced and developed by researchers. The two major components of a load modeling problem are determining the mathematical model for the target system and estimating the parameters of the determined model. We use the composite load model, which has both static and dynamic load characteristics. The ZIP model and the induction motor model are used for the static and dynamic load models, respectively. In this work, we propose the measurement-based parameter estimation method for the composite load model. The test system and related measurements are obtained using transient security assessment tool(TSAT) simulation program and PSS/E. The parameter estimation is then verified using these measurements. Cases are tested and verified using the sample system and its related measurements.

Ultimate load behavior of horizontally curved composite plate girders

  • Shanmugam, N.E.;Basher, M.A.;Khalim, A.R.
    • Steel and Composite Structures
    • /
    • v.9 no.4
    • /
    • pp.325-348
    • /
    • 2009
  • This paper is concerned with steel-concrete composite plate girders curved in plan. At the design stage these girders are assumed sometimes to act independent of the deck slabs resting on them in order to simplify the analysis. The advantage of composite action between the steel girders and concrete deck is not utilized. Finite element modeling of such composite action in plate girders is considered in this paper. Details of the finite element modeling and the non-linear analysis of the girders are presented along with the results obtained. Tension field action in the web panels similar to those observed in the straight plate girders is also noticed in these girders. Finite element and experimental results in respect of curved steel plate girders and straight composite plate girders tested by other researchers are presented first to assess the accuracy of the modeling. Effects of parameters such as curvature, steel flange width and web panel width that affect the behavior of composite girders are then considered in the analyses. An approximate method to predict the ultimate strength of horizontally curved composite plate girders is also presented.

Influence of modeling agents on the surface properties of an esthetic nano-hybrid composite

  • Kutuk, Zeynep Bilge;Erden, Ecem;Aksahin, Damla Lara;Durak, Zeynep Elif;Dulda, Alp Can
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.2
    • /
    • pp.13.1-13.10
    • /
    • 2020
  • Objective: The aim of this study was to evaluate the influence of different modeling agents on the surface microhardness (Vickers hardness number; VHN), roughness (Ra), and color change (ΔE) of a nano-hybrid composite with or without exposure to discoloration by coffee. Materials and Methods: Sixty-four cylinder-shaped nano-hybrid composite specimens were prepared using a Teflon mold. The specimens' surfaces were prepared according to the following groups: group 1, no modeling agent; group 2, Modeling Liquid; group 3, a universal adhesive (G-Premio Bond); and group 4, the first step of a 2-step self-adhesive system (OptiBond XTR). Specimens were randomly allocated into 2 groups (n = 8) according to the storage medium (distilled water or coffee). VHN, Ra, and ΔE were measured at 24 hours, 1 week, and 6 weeks. The Kruskal-Wallis test followed by the Bonferroni correction for pairwise comparisons was used for statistical analysis (α = 0.05). Results: Storage time did not influence the VHN of the nano-hybrid composite in any group (p > 0.05). OptiBond XTR Primer application affected the VHN negatively in all investigated storage medium and time conditions (p < 0.05). Modeling Liquid application yielded improved Ra values for the specimens stored in coffee at each time point (p < 0.05). Modeling Liquid application was associated with the lowest ΔE values in all investigated storage medium and time conditions (p < 0.05). Conclusion: Different types of modeling agents could affect the surface properties and discoloration of nano-hybrid composites.

Tubular composite beam-columns of annular cross-sections and their design practice

  • Kvedaras, A.K.;Kudzys, A.
    • Steel and Composite Structures
    • /
    • v.10 no.2
    • /
    • pp.109-128
    • /
    • 2010
  • The expediency of using tubular composite steel and concrete columns of annular cross-sections in construction is discussed. The new type space framework with tubular composite columns of multi-storey buildings and its rigid beam-column joints are demonstrated. The features of interaction between the circular steel tube and spun concrete stress-strain states during the concentrical and eccentrical loading of tubular composite members are considered. The modeling of the bearing capacity of beam-columns of composite annular cross-sections is based on the concepts of bending with a concentrical force and compression with a bending moment. The comparison of modeling results for the composite cross-sections of beam-columns is analysed. The expediency of using these concepts for the limit state verification of beam-columns in the methods of the partial safety factors design (PSFD) legitimated in Europe and the load and resistance factors design (LRFD) used in other countries is presented and illustrated by a numerical example.