• 제목/요약/키워드: composite model

검색결과 3,637건 처리시간 0.023초

On buckling analysis of laminated composite plates using a nonlocal refined four-variable model

  • Shahsavari, Davood;Karami, Behrouz;Janghorban, Maziar
    • Steel and Composite Structures
    • /
    • 제32권2호
    • /
    • pp.173-187
    • /
    • 2019
  • This study is concerned with the stability of laminated composite plates modelled using Eringen's nonlocal differential model (ENDM) and a novel refined-hyperbolic-shear-deformable plate theory. The plate is assumed to be lying on the Pasternak elastic foundation and is under the influence of an in-plane magnetic field. The governing equations and boundary conditions are obtained through Hamilton's principle. An analytical approach considering Navier series is used to fine the critical bucking load. After verifying with existing results for the reduced cases, the present model is then used to study buckling of the laminated composite plate. Numerical results demonstrate clearly for the first time the roles of size effects, magnetic field, foundation parameters, moduli ratio, geometry, lay-up numbers and sequences, fiber orientations, and boundary conditions. These results could be useful for designing better composites and can further serve as benchmarks for future studies on the laminated composite plates.

Measurement-based Estimation of the Composite Load Model Parameters

  • Kim, Byoung-Ho;Kim, Hong-Rae
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권6호
    • /
    • pp.845-851
    • /
    • 2012
  • Power system loads have a significant impact on a system. Although it is difficult to precisely describe loads in a mathematical model, accurately modeling them is important for a system analysis. The traditional load modeling method is based on the load components of a bus. Recently, the load modeling method based on measurements from a system has been introduced and developed by researchers. The two major components of a load modeling problem are determining the mathematical model for the target system and estimating the parameters of the determined model. We use the composite load model, which has both static and dynamic load characteristics. The ZIP model and the induction motor model are used for the static and dynamic load models, respectively. In this work, we propose the measurement-based parameter estimation method for the composite load model. The test system and related measurements are obtained using transient security assessment tool(TSAT) simulation program and PSS/E. The parameter estimation is then verified using these measurements. Cases are tested and verified using the sample system and its related measurements.

Analysis of composite frame structures with mixed elements - state of the art

  • Ayoub, Ashraf
    • Structural Engineering and Mechanics
    • /
    • 제41권2호
    • /
    • pp.157-181
    • /
    • 2012
  • The paper presents a review of the application of the newly proposed mixed finite element model for seismic simulation of different types of composite frame structures. To evaluate the performance of the element, a comparison with displacement-based and force-based models is conducted. The study revealed that the mixed model is superior to the others in terms of both speed of convergence and numerical stability, and is therefore considered the most practical approach for modeling of composite structures. In this model, the element is derived using independent force and displacement shape functions. The nonlinear response of the frame element is based on the section discretization into fibers with uniaxial material models. The interfacial behavior is modeled using an inelastic interface element. Numerical examples to clarify the advantages of the model are presented for the following structural applications: anchored reinforcing bar problems, composite steel-concrete girders with deformable shear connectors, beam on elastic foundation elements, R/C girders strengthened with FRP sheets, R/C beam-columns with bond-slip, and prestressed concrete girders. These studies confirmed that the model represents a major advancement over existing elements in simulating the inelastic behavior of composite structures.

Development of Composite Load Models of Power Systems using On-line Measurement Data

  • Choi Byoung-Kon;Chiang Hsiao Dong;Li Yinhong;Chen Yung Tien;Huang Der Hua;Lauby Mark G.
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권2호
    • /
    • pp.161-169
    • /
    • 2006
  • Load representation has a significant impact on power system analysis and control results. In this paper, composite load models are developed based on on-line measurement data from a practical power system. Three types of static-dynamic load models are derived: general ZIP-induction motor model, Exponential-induction motor model and Z-induction motor model. For the dynamic induction motor model, two different third-order induction motor models are studied. The performances in modeling real and reactive power behaviors by composite load models are compared with other dynamic load models in terms of relative mismatch error. In addition, numerical consideration of ill-conditioned parameters is addressed based on trajectory sensitivity. Numerical studies indicate that the developed composite load models can accurately capture the dynamic behaviors of loads during disturbance.

Advanced numerical model for the fire behaviour of composite columns with hollow steel section

  • Renaud, C.;Aribert, J.M.;Zhao, B.
    • Steel and Composite Structures
    • /
    • 제3권2호
    • /
    • pp.75-95
    • /
    • 2003
  • A numerical model is presented to simulate the mechanical behaviour of composite steel and concrete columns taking into account the interaction between the hollow steel section and the concrete core. The model, based on displacement finite element methods with an Updated Lagrangian formulation, allows for geometrical and material non linearities combined with heating over all or a part of the section and column length. Comparisons of numerical calculations made using the model with 33 fire resistance tests show that the model is able to predict the fire resistance, expressed in minutes of fire exposure, of composite columns with a good accuracy.

Analysis of composite steel-concrete beams using a refined high-order beam theory

  • Lezgy-Nazargah, M.;Kafi, L.
    • Steel and Composite Structures
    • /
    • 제18권6호
    • /
    • pp.1353-1368
    • /
    • 2015
  • A finite element model is presented for the analysis of composite steel-concrete beams based on a refined high-order theory. The employed theory satisfies all the kinematic and stress continuity conditions at the layer interfaces and considers effects of the transverse normal stress and transverse flexibility. The global displacement components, described by polynomial or combinations of polynomial and exponential expressions, are superposed on local ones chosen based on the layerwise or discrete-layer concepts. The present finite model does not need the incorporating any shear correction factor. Moreover, in the present $C^1$-continuous finite element model, the number of unknowns is independent of the number of layers. The proposed finite element model is validated by comparing the present results with those obtained from the three-dimensional (3D) finite element analysis. In addition to correctly predicting the distribution of all stress components of the composite steel-concrete beams, the proposed finite element model is computationally economic.

Hysteresis modeling for cyclic behavior of concrete-steel composite joints using modified CSO

  • Yu, Yang;Samali, Bijan;Zhang, Chunwei;Askari, Mohsen
    • Steel and Composite Structures
    • /
    • 제33권2호
    • /
    • pp.277-298
    • /
    • 2019
  • Concrete filled steel tubular (CFST) column joints with composite beams have been widely used as lateral loading resisting elements in civil infrastructure. To better utilize these innovative joints for the application of structural seismic design and analysis, it is of great importance to investigate the dynamic behavior of the joint under cyclic loading. With this aim in mind, a novel phenomenal model has been put forward in this paper, in which a Bouc-Wen hysteresis component is employed to portray the strength and stiffness deterioration phenomenon caused by increment of loading cycle. Then, a modified chicken swarm optimization algorithm was used to estimate the optimal model parameters via solving a global minimum optimization problem. Finally, the experimental data tested from five specimens subjected to cyclic loadings were used to validate the performance of the proposed model. The results effectively demonstrate that the proposed model is an easy and more realistic tool that can be used for the pre-design of CFST column joints with reduced beam section (RBS) composite beams.

Simplified nonlinear simulation for composite segmental lining of rectangular shield tunnels

  • Zhao, Huiling;Liu, Xian;Yuan, Yong
    • Structural Engineering and Mechanics
    • /
    • 제81권4호
    • /
    • pp.513-522
    • /
    • 2022
  • Steel-concrete composite segments replacing the conventional reinforced concrete segments can provide the rectangular shield tunnel superiorities on bearing capacity, ductility and economy. A simplified model with high-efficiency on computation is proposed for investigating the nonlinear response of the rectangular tunnel lining composed of composite segments. The simulation model is developed by an assembly of nonlinear fiber beam elements and spring elements to express the transfer mechanism of forces through components of composite segments, and radial joints. The simulation is conducted with the considerations of material nonlinearity and geometric nonlinearity associated with the whole loading process. The validity of the model is evaluated through comparison of the proposed nonlinear simulation with results obtained from the full-scale test of the segmental tunnel lining. Furthermore, a parameter study is conducted by means of the simplified model. The results show that the stiffness of the radial joint at haunch of the ling and the thickness of inner steel plate of segments have remarkable influence on the behaviour of the lining.

Failure Pressure Prediction of Composite Cylinders for Hydrogen Storage Using Thermo-mechanical Analysis and Neural Network

  • Hu, J.;Sundararaman, S.;Menta, V.G.K.;Chandrashekhara, K.;Chernicoff, William
    • Advanced Composite Materials
    • /
    • 제18권3호
    • /
    • pp.233-249
    • /
    • 2009
  • Safe installation and operation of high-pressure composite cylinders for hydrogen storage are of primary concern. It is unavoidable for the cylinders to experience temperature variation and significant thermal input during service. The maximum failure pressure that the cylinder can sustain is affected due to the dependence of composite material properties on temperature and complexity of cylinder design. Most of the analysis reported for high-pressure composite cylinders is based on simplifying assumptions and does not account for complexities like thermo-mechanical behavior and temperature dependent material properties. In the present work, a comprehensive finite element simulation tool for the design of hydrogen storage cylinder system is developed. The structural response of the cylinder is analyzed using laminated shell theory accounting for transverse shear deformation and geometric nonlinearity. A composite failure model is used to evaluate the failure pressure under various thermo-mechanical loadings. A back-propagation neural network (NNk) model is developed to predict the maximum failure pressure using the analysis results. The failure pressures predicted from NNk model are compared with those from test cases. The developed NNk model is capable of predicting the failure pressure for any given loading condition.

구조적 모델링을 위한 객체지향적 모델베이스 조직화 (On the Organization of Object-Oriented Model Bases for Structured Modeling)

  • 정대율
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제5권
    • /
    • pp.149-173
    • /
    • 1996
  • This paper focus on the development of object-oriented model bases for Structured Modeling. For the model base organization, object modeling techniques and model typing concept which is similar to data typing concept are used. Structured modeling formalizes the notion of a definitional system as a way of dscribing models. From the object-oriented concept, a structured model can be represented as follows. Each group of similar elements(genus) is represented by a composite class. Other type of genera can be represented in a similar manner. This hierarchical class composition gives rise to an acyclic class-composition graph which corresponds with the genus graph of structured model. Nodes in this graph are instantiated to represent the elemental graph for a specific model. Taking this class composition process one step further, we aggregate the classes into higher-level composite classes which would correspond to the structured modeling notion of a module. Finally, the model itself is then represented by a composite class having attributes each of whose domain is a composite class representing one of the modules. The resulting class-composition graph represent the modular tree of the structured.

  • PDF