Browse > Article
http://dx.doi.org/10.12989/scs.2019.33.2.277

Hysteresis modeling for cyclic behavior of concrete-steel composite joints using modified CSO  

Yu, Yang (Centre for Infrastructure Engineering, Western Sydney University)
Samali, Bijan (Centre for Infrastructure Engineering, Western Sydney University)
Zhang, Chunwei (School of Civil Engineering, Qingdao University of Technology)
Askari, Mohsen (Centre for Infrastructure Engineering, Western Sydney University)
Publication Information
Steel and Composite Structures / v.33, no.2, 2019 , pp. 277-298 More about this Journal
Abstract
Concrete filled steel tubular (CFST) column joints with composite beams have been widely used as lateral loading resisting elements in civil infrastructure. To better utilize these innovative joints for the application of structural seismic design and analysis, it is of great importance to investigate the dynamic behavior of the joint under cyclic loading. With this aim in mind, a novel phenomenal model has been put forward in this paper, in which a Bouc-Wen hysteresis component is employed to portray the strength and stiffness deterioration phenomenon caused by increment of loading cycle. Then, a modified chicken swarm optimization algorithm was used to estimate the optimal model parameters via solving a global minimum optimization problem. Finally, the experimental data tested from five specimens subjected to cyclic loadings were used to validate the performance of the proposed model. The results effectively demonstrate that the proposed model is an easy and more realistic tool that can be used for the pre-design of CFST column joints with reduced beam section (RBS) composite beams.
Keywords
composite joint; cyclic loading; hysteresis; model identification; chicken swarm optimization;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Chao, S.H. and Loh, C.H. (2009), "A biaxial hysteretic model for a structural system incorporating strength deterioration and pinching phenomena", Int. J. Nonlin. Mech., 44(7), 745-756. https://doi.org/10.1016/j.ijnonlinmec.2009.04.005   DOI
2 Chen, S., Yang, R., Yang, R., Yang, L., Yang, X., Xu, C., Xu, B., Zhang, H., Lu, Y. and Liu, W. (2016), "A parameter estimation method for nonlinear systems based on improved boundary chicken swarm optimization", Discrete Dyn. Nat. Soc., 2016, 3795961. http://dx.doi.org/10.1155/2016/3795961
3 Clough, R.W. and Johnston, S.B. (1966), "Effect of stiffness degradation on earthquake ductility requirements", Proceedings of the 2nd Japan National Conference on Earthquake Engineering, International Association for Earthquake Engineering, Tokyo, pp. 227-232.
4 Das, A., Hirwani, C.K., Panda, S.K., Topal, U. and Dede, T. (2018), "Prediction and analysis of optimal frequency of layered composite structure using higher-order FEM and soft computing techniques", Steel Compos. Struct., Int. J., 29(6), 749-758. https://doi.org/10.12989/scs.2018.29.6.749
5 Dowell, R.K., Seible, F. and Wilson, E.L. (1998), "Pivot hysteresis model for reinforced concrete members", ACI Struct. J., 95(5), 607-617.
6 Farrokh, M., Dizaji, M.S. and Joghataie, A. (2015), "Modeling hysteretic deteriorating behavior using generalized prandtl neural network", J. Eng. Mech., 141(8), 04015024. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000925   DOI
7 Foliente, G.C. (1995), "Hysteresis modeling of wood joints and structural systems", J. Struct. Eng., 121(6), 1013-1022. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:6(1013)   DOI
8 Han, L.-H., Xu, C.-Y. and Tao, Z. (2019), "Performance of concrete filled stainless steel tubular (CFSST) columns and joints: Summary of recent research", J. Constr. Steel Res., 152, 117-131. https://doi.org/10.1016/j.jcsr.2018.02.038   DOI
9 Wen, Y.K. (1976), "Method for random vibration of hysteretic systems", ASCE J. Eng. Mech. Div. 102(2), 249-263.   DOI
10 Wang, J., Yang, J. and Cheng, L. (2019), "Experimental study of seismic behavior of high-strength RC columns strengthened with CFRP subjected to cyclic loading", J. Struct. Eng., 145(2), 04018240. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002251   DOI
11 Wu, D., Xu, S. and Kong, F. (2016), "Convergence analysis and improvement of the chicken swarm optimization algorithm", IEEE Access, 4, 9400-9412. https://doi.org/10.1109/ACCESS.2016.2604738   DOI
12 Yu, B., Ning, C. and Li, B. (2016), "Hysteretic model for shearcritical reinforced concrete columns", J. Struct. Eng., 142(9), 04016056. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001519   DOI
13 Li, R., Samali, B., Tao, Z. and Hassan, M.K. (2017b), "Cyclic behaviour of composite joints with reduced beam sections", Eng. Struct., 136, 329-344.   DOI
14 Ho-Huu, V., Vo-Duy, T., Duong-Gia, D. and Nguyen-Thoi, T. (2018), "An efficient procedure for lightweight optimal design of composite laminated beams", Steel Compos. Struct., Int. J., 27(3), 297-310. https://doi.org/10.12989/scs.2018.27.3.297
15 Ibarra, L.F., Medina, R.A. and Krawinkler, H. (2005), "Hysteretic models that incorporate strength and stiffness deterioration", Earthq. Eng. Struct. D., 34(12), 1489-1511. https://doi.org/10.1002/eqe.495   DOI
16 Li, D., Uy, B., Patel, V. and Aslani, F. (2017a), "Analysis and design of demountable embedded steel column base connections", Steel Compos. Struct., Int. J., 23(3), 303-315. https://doi.org/10.12989/scs.2017.23.3.303   DOI
17 Ma, D.-Y., Han, L.-H. and Zhao, X.-L. (2019), "Seismic performance of the concrete-encased CFST column to RC beam joint: Experiment", J. Constr. Steel. Res., 154, 134-148. https://doi.org/10.1016/j.jcsr.2018.11.030   DOI
18 Li, D., Uy, B., Patel, V. and Aslani, F. (2018a), "Behaviour and design of demountable CFST column-column connections subjected to compression", J. Constr. Steel. Res., 141, 262-274. https://doi.org/10.1016/j.jcsr.2017.11.021   DOI
19 Li, D., Wang, J., Uy, B., Aslani, F. and Patel, V. (2018b), "Analysis and design of demountable circular CFST column-base connections", Steel Compos. Struct., Int. J., 28(5), 559-571. https://doi.org/10.12989/scs.2018.28.5.559
20 Liu, D., Liu, C., Fu, Q., Li, T., Khan, M.I., Cui, S. and Faiz, M.A. (2018), "Projection pursuit evaluation model of regional surface water environment based on improved chicken swarm optimization algorithm", Water Resour. Manag., 32(4), 1325-1342. https://doi.org/10.1007/s11269-017-1872-6   DOI
21 Nithyadharan, M. and Kalyanaraman, V. (2013), "Modelling hysteretic behaviour of cold-formed steel wall panels", Eng. Struct., 46, 643-652. https://doi.org/10.1016/j.engstruct.2012.08.022   DOI
22 McCrum, D.P., Simon, J., Grimes, M., Broderick, B.M., Lim, J.B.P. and Wrzesien, A.M. (2019), "Experimental cyclic performance of cold-formed steel bolted moment resisting frames", Eng. Struct., 181, 1-14. https://doi.org/10.1016/j.engstruct.2018.11.063   DOI
23 Meng, X., Liu, Y., Gao, X. and Zhang, H. (2014), "A new bioinspired algorithm: Chicken swarm optimization", Lect. Notes Comput. Sci., 8794, 86-94. https://doi.org/10.1007/978-3-319-11857-4_10   DOI
24 Ning, C., Yu, B. and Li, B. (2016), "Beam-column joint model for nonlinear analysis of non-seismically detailed reinforced concrete frame", J. Earthq. Eng., 20(3), 476-502. https://doi.org/10.1080/13632469.2015.1104759   DOI
25 Sengupta, P. and Li, B. (2013), "Modified Bouc-Wen model for hysteresis behavior of RC beam-column joints with limited transverse reinforcement", Eng. Struct., 46, 392-406. https://doi.org/10.1016/j.engstruct.2012.08.003   DOI
26 Otani, S. and Sozen, M. (1974), "Simulated earthquake tests of R/C frames", ASCE J. Eng. Mech. Div., 100, 687-701.   DOI
27 Ozcebe, G. and Saatcioglu, M. (1989), "Hysteretic shear model for reinforced concrete members", J. Struct. Eng., 115(1), 132-148. https://doi.org/10.1061/(ASCE)0733-9445(1989)115:1(132)   DOI
28 Ray, T. and Reinhorn, A.M. (2014), "Enhanced smooth hysteretic model with degrading properties", J. Struct. Eng., 140(1), 04013028. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000798   DOI
29 Sengupta, P. and Li, B. (2014), "Hysteresis behavior of reinforced concrete walls", J. Struct. Eng., 140(7), 04014030. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000927   DOI
30 Al Shayokh, M. and Shin, S.Y. (2017), "Bio inspired distributed WSN localization based on chicken swarm optimization", Wireless Pers. Commun., 97(4), 5691-5706. https://doi.org/10.1007/s11277-017-4803-1   DOI
31 AS 1012.9 (2014), Methods of testing concrete, Method 9: compressive strength tests-concrete, mortar and grout specimens, Standards Australia; Sydney, Australia.
32 AS 1012.10 (2014), Methods of testing concrete, Method 10: determination of indirect tensile strength of concrete cylinders ('Brazil' or splitting test), Standards Australia; Sydney, Australia.
33 AS 2327.1 (2003), Composite structures, Part 1: simply supported beams, Standards Australia; Sydney, Australia.
34 Baber, T.T. and Noori, M.N. (1985), "Random vibration of degrading, pinching systems", J. Eng. Mech., 111(8), 1010-1026. https://doi.org/10.1061/(ASCE)0733-9399(1985)111:8(1010)   DOI
35 Baber, T.T. and Wen, Y.K. (1981), "Random vibration hysteretic, degrading systems", ASCE J. Eng. Mech. Div., 107(6), 1069-1087.   DOI
36 BS EN 1993-1-1 (2005), Design of steel structures, Part 1. 1: general rules and rules for buildings, British Standards Institution; London, United Kingdom.
37 BS EN 1994-1-1 (2006), Design of composite steel and concrete structures, Part 1. 1: general rules and rules for buildings, British Standards Institution; London, United Kingdom.
38 Thai, H.-T. and Uy, B. (2015), "Finite element modelling of blind bolted composite joints", J. Constr. Steel. Res., 112, 339-353. https://doi.org/10.1016/j.jcsr.2015.05.011   DOI
39 Sezen, H. and Chowdhury, T. (2009), "Hysteretic model for reinforced concrete columns including the effect of shear and axial load failure", J. Struct. Eng. 135(2), 139-146. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:2(139)   DOI
40 Sofianos, C.D. and Koumousis, V.K. (2018), "Hysteretic beam element with degrading smooth models", Arch. Appl. Mech., 88(1-2), 253-269. https://doi.org/10.1007/s00419-017-1263-8   DOI
41 Thai, H.-T. and Uy, B. (2016), "Rotational stiffness and moment resistance of bolted endplate joints with hollow or CFST columns", J. Constr. Steel. Res., 126, 139-152. https://doi.org/10.1016/j.jcsr.2016.07.005   DOI
42 Varnava, V. and Komodromos, P. (2013), "Assessing the effect of inherent nonlinearities in the analysis and design of a low-rise base isolated steel building", Earthq. Struct., Int. J., 5(5), 499-526. https://doi.org/10.12989/eas.2013.5.5.499   DOI
43 Veletsos, A.S., Newmark, N.M. and Chelapati, C.V. (1965), "Deformation spectra for elastic and elastoplastic systems subjected to ground shock and earthquake motions", Wellington, New Zealand, January.
44 Wang, J.F., Han, L.H. and Uy, B. (2009), "Hysteretic behaviour of flush end plate joints to concrete-filled steel tubular columns", J. Constr. Steel Res., 65(8-9), 1644-1663. https://doi.org/10.1016/j.jcsr.2008.12.008   DOI
45 Wang, P.H., Ou, Y.C. and Chang, K.C. (2017), "A new smooth hysteretic model for ductile flexural-dominated reinforced concrete bridge columns", Earthq. Eng. Struct. D., 46(14), 2237-2259. https://doi.org/10.1002/eqe.2875   DOI
46 Wang, J., Zhu, H., Uy, B., Patel, V., Aslani, F. and Li, D. (2018), "Moment-rotation relationship of hollow-section beam-tocolumn steel joints with extended end-plates", Steel Compos. Struct., Int. J., 29(6), 717-734. https://doi.org/10.12989/scs.2018.29.6.717