• 제목/요약/키워드: composite mechanics

검색결과 961건 처리시간 0.026초

Curvature-based analysis of concrete beams reinforced with steel bars and fibres

  • Kaklauskas, Gintaris;Sokolov, Aleksandr;Shakeri, Ashkan;Ng, Pui-Lam;Barros, Joaquim A.O.
    • Structural Engineering and Mechanics
    • /
    • 제81권3호
    • /
    • pp.349-365
    • /
    • 2022
  • Steel fibre-reinforced concrete (SFRC) is an emerging class of composite for construction. However, a reliable method to assess the flexural behaviour of SFRC structural member is in lack. An analytical technique is proposed for determining the moment-curvature response of concrete beams reinforced with steel fibres and longitudinal bars (R/SFRC members). The behaviour of the tensile zone of such members is highly complex due to the interaction between the residual (tension softening) stresses of SFRC and the tension stiffening stresses. The current study suggests a transparent and mechanically sound method to combine these two stress concepts. Tension stiffening is modelled by the reinforcement-related approach assuming that the corresponding stresses act in the area of tensile reinforcement. The effect is quantified based on the analogy between the R/SFRC member and the equivalent RC member having identical geometry and materials except fibres. It is assumed that the resultant tension stiffening force for the R/SFRC member can be calculated as for the equivalent RC member providing that the reinforcement strain in the cracked section of these members is the same. The resultant tension stiffening force can be defined from the moment-curvature relation of the equivalent RC member using an inverse technique. The residual stress is calculated using an existing model that eliminates the need for dedicated mechanical testing. The proposed analytical technique was validated against test data of R/SFRC beams and slabs.

Data driven inverse stochastic models for fiber reinforced concrete

  • Kozar, Ivica;Bede, Natalija;Bogdanic, Anton;Mrakovcic, Silvija
    • Coupled systems mechanics
    • /
    • 제10권6호
    • /
    • pp.509-520
    • /
    • 2021
  • Fiber-reinforced concrete (FRC) is a composite material where small fibers made from steel or polypropylene or similar material are embedded into concrete matrix. In a material model each constituent should be adequately described, especially the interface between the matrix and fibers that is determined with the 'bond-slip' law. 'Bond-slip' law describes relation between the force in a fiber and its displacement. Bond-slip relation is usually obtained from tension laboratory experiments where a fiber is pulled out from a matrix (concrete) block. However, theoretically bond-slip relation could be determined from bending experiments since in bending the fibers in FRC get pulled-out from the concrete matrix. We have performed specially designed laboratory experiments of three-point beam bending with an intention of using experimental data for determination of material parameters. In addition, we have formulated simple layered model for description of the behavior of beams in the three-point bending test. It is not possible to use this 'forward' beam model for extraction of material parameters so an inverse model has been devised. This model is a basis for formulation of an inverse model that could be used for parameter extraction from laboratory tests. The key assumption in the developed inverse solution procedure is that some values in the formulation are known and comprised in the experimental data. The procedure includes measured data and its derivative, the formulation is nonlinear and solution is obtained from an iterative procedure. The proposed method is numerically validated in the example at the end of the paper and it is demonstrated that material parameters could be successfully recovered from measured data.

Analytical investigation of the cyclic behaviour of I-shaped steel beam with reinforced web using bonded CFRP

  • Mohabeddine, Anis I.;Eshaghi, Cyrus;Correia, Jose A.F.O.;Castro, Jose M.
    • Steel and Composite Structures
    • /
    • 제43권4호
    • /
    • pp.447-456
    • /
    • 2022
  • Recent experimental studies showed that deep steel I-shaped profiles classified as high ductility class sections in seismic design international codes exhibit low deformation capacity when subjected to cyclic loading. This paper presents an innovative retrofit solution to increase the rotation capacity of beams using bonded carbon fiber reinforced polymers (CFRP) patches validated with advanced finite element analysis. This investigation focuses on the flexural cyclic behaviour of I-shaped hot rolled steel deep section used as beams in moment-resisting frames (MRF) retrofitted with CFRP patches on the web. The main goal of this CFRP reinforcement is to increase the rotation capacity of the member without increasing the overstrength in order to avoid compromising the strong column-weak beam condition in MRF. A finite element model that simulates the cyclic plasticity behavior of the steel and the damage in the adhesive layer is developed. The damage is modelled using the cohesive zone modelling (CZM) technique that is able to capture the crack initiation and propagation. Details on the modelling techniques including the mesh sensitivity near the fracture zone are presented. The effectiveness of the retrofit solution depends strongly on the selection of the appropriate adhesive. Different adhesive types are investigated where the CZM parameters are calibrated from high fidelity fracture mechanics tests that are thoroughly validated in the literature. This includes a rigid adhesive commonly found in the construction industry and two tough adhesives used in the automotive industry. The results revealed that the CFRP patch can increase the rotation capacity of a steel member considerably when using tough adhesives.

A case study of protecting bridges against overheight vehicles

  • Aly, Aly Mousaad;Hoffmann, Marc A.
    • Steel and Composite Structures
    • /
    • 제43권2호
    • /
    • pp.165-183
    • /
    • 2022
  • Most transportation departments have recognized and developed procedures to address the ever-increasing weights of trucks traveling on bridges in a service today. Transportation agencies also recognize the issues with overheight vehicles' collisions with bridges, but few stakeholders have definitive countermeasures. Bridges are becoming more vulnerable to collisions from overheight vehicles. The exact response under lateral impact force is difficult to predict. In this paper, nonlinear impact analysis shows that the degree of deformation recorded through the modeling of the unprotected vehicle-girder model provides realistic results compared to the observation from the US-61 bridge overheight vehicle impact. The predicted displacements are 0.229 m, 0.161 m, and 0.271 m in the girder bottom flange (lateral), bottom flange (vertical), and web (lateral) deformations, respectively, due to a truck traveling at 112.65 km/h. With such large deformations, the integrity of an impacted bridge becomes jeopardized, which in most cases requires closing the bridge for safety reasons and a need for rehabilitation. We proposed different sacrificial cushion systems to dissipate the energy of an overheight vehicle impact. The goal was to design and tune a suitable energy absorbing system that can protect the bridge and possibly reduce stresses in the overheight vehicle, minimizing the consequences of an impact. A material representing a Sorbothane high impact rubber was chosen and modeled in ANSYS. Out of three sacrificial schemes, a sandwich system is the best in protecting both the bridge and the overheight vehicle. The mitigation system reduced the lateral deflection in the bottom flange by 89%. The system decreased the stresses in the bridge girder and the top portion of the vehicle by 82% and 25%, respectively. The results reveal the capability of the proposed sacrificial system as an effective mitigation system.

Flexural response of steel beams strengthened by fibre-reinforced plastic plate and fire retardant coating at elevated temperatures

  • Ahmed, Alim Al Ayub;Kharnoob, Majid M.;Akhmadeev, Ravil;Sevbitov, Andrei;Jalil, Abduladheem Turki;Kadhim, Mustafa M.;Hansh, Zahra J.;Mustafa, Yasser Fakri;Akhmadullina, Irina
    • Structural Engineering and Mechanics
    • /
    • 제83권4호
    • /
    • pp.551-561
    • /
    • 2022
  • In this paper, the effect of fire conditions according to ISO 834 standard on the behavior of carbon fibre-reinforced plastic (CFRP) reinforced steel beams coated with gypsum-based mortar has been investigated numerically. To study the efficiency of these beams, 3D coupled temperature-displacement finite element analyzes have been conducted. Mechanical and thermal characteristics of three different parts of composite beams, i.e., steel, CFRP plate, and fireproof coating, were considered as a function of temperature. The interaction between steel and CFRP plate has been simulated employing the adhesion model. The effect of temperature, CFRP plate reinforcement, and the fireproof coating thickness on the deformation of the beams have been analyzed. The results showed that within the first 120 min of fire exposure, increasing the thickness of the fireproof coating from 1 mm to 10 mm reduced the maximum temperature of the outer surface of the steel beam from 380℃ to 270℃. This increase in the thickness of the fireproof layer decreased the rate of growth in the temperature of the steel beam by approximately 30%. Besides excellent thermal resistance and gypsum-based mortar, the studied fireproof coating method could provide better fire resistance for steel structures and thus can be applied to building materials.

Data-driven prediction of compressive strength of FRP-confined concrete members: An application of machine learning models

  • Berradia, Mohammed;Azab, Marc;Ahmad, Zeeshan;Accouche, Oussama;Raza, Ali;Alashker, Yasser
    • Structural Engineering and Mechanics
    • /
    • 제83권4호
    • /
    • pp.515-535
    • /
    • 2022
  • The strength models for fiber-reinforced polymer (FRP)-confined normal strength concrete (NC) cylinders available in the literature have been suggested based on small databases using limited variables of such structural members portraying less accuracy. The artificial neural network (ANN) is an advanced technique for precisely predicting the response of composite structures by considering a large number of parameters. The main objective of the present investigation is to develop an ANN model for the axial strength of FRP-confined NC cylinders using various parameters to give the highest accuracy of the predictions. To secure this aim, a large experimental database of 313 FRP-confined NC cylinders has been constructed from previous research investigations. An evaluation of 33 different empirical strength models has been performed using various statistical parameters (root mean squared error RMSE, mean absolute error MAE, and coefficient of determination R2) over the developed database. Then, a new ANN model using the Group Method of Data Handling (GMDH) has been proposed based on the experimental database that portrayed the highest performance as compared with the previous models with R2=0.92, RMSE=0.27, and MAE=0.33. Therefore, the suggested ANN model can accurately capture the axial strength of FRP-confined NC cylinders that can be used for the further analysis and design of such members in the construction industry.

Bending analysis of nano-SiO2 reinforced concrete slabs resting on elastic foundation

  • Mohammed, Chatbi;Baghdad, Krour;Mohamed A., Benatta;Zouaoui R., Harrat;Sofiane, Amziane;Mohamed Bachir, Bouiadjra
    • Structural Engineering and Mechanics
    • /
    • 제84권5호
    • /
    • pp.685-697
    • /
    • 2022
  • Nanotechnology has become one of the interesting technique used in material science and engineering. However, it is low used in civil engineering structures. The purpose of the present study is to investigate the static behavior of concrete plates reinforced with silica-nanoparticles. Due to agglomeration effect of silica-nanoparticles in concrete, Voigt's model is used for obtaining the equivalent nano-composite properties. Furthermore, the plate is simulated mathematically with higher order shear deformation theory. For a large use of this study, the concrete plate is assumed resting on a Pasternak elastic foundation, including a shear layer, and Winkler spring interconnected with a Kerr foundation. Using the principle of virtual work, the equilibrium equations are derived and by the mean of Hamilton's principle the energy equations are obtained. Finally, based on Navier's technique, closed-form solutions of simply supported plates have been obtained. Numerical results are presented considering the effect of different parameters such as volume percent of SiO2 nanoparticles, mechanical loads, geometrical parameters, soil medium, on the static behavior of the plate. The most findings of this work indicate that the use of an optimum amount of SiO2 nanoparticles on concretes increases better mechanical behavior. In addition, the elastic foundation has a significant impact on the bending of concrete slabs.

Reinforced concrete structures with damped seismic buckling-restrained bracing optimization using multi-objective evolutionary niching ChOA

  • Shouhua Liu;Jianfeng Li;Hamidreza Aghajanirefah;Mohammad Khishe;Abbas Khishe;Arsalan Mahmoodzadeh;Banar Fareed Ibrahim
    • Steel and Composite Structures
    • /
    • 제47권2호
    • /
    • pp.147-165
    • /
    • 2023
  • The paper contrasts conventional seismic design with a design that incorporates buckling-restrained bracing in three-dimensional reinforced concrete buildings (BRBs). The suboptimal structures may be found using the multi-objective chimp optimization algorithm (MEN-ChOA). Given the constraints and dimensions, ChOA suffers from a slow convergence rate and tends to become stuck in local minima. Therefore, the ChOA is improved by niching and evolutionary operators to overcome the aforementioned problems. In addition, a new technique is presented to compute seismic and dead loads that include all of a structure's parts in an algorithm for three-dimensional frame design rather than only using structural elements. The performance of the constructed multi-objective model is evaluated using 12 standard multi-objective benchmarks proposed in IEEE congress on evolutionary computation. Second, MEN-ChOA is employed in constructing several reinforced concrete structures by the Mexico City building code. The variety of Pareto optimum fronts of these criteria enables a thorough performance examination of the MEN-ChOA. The results also reveal that BRB frames with comparable structural performance to conventional moment-resistant reinforced concrete framed buildings are more cost-effective when reinforced concrete building height rises. Structural performance and building cost may improve by using a nature-inspired strategy based on MEN-ChOA in structural design work.

국내 최초 TBM선굴진 2-Arch터널 설계사례 연구 (The First Case Study of TBM Pre-Excavation Type 2-Arch Tunnel in Korea)

  • 김형렬;정상준;강준호
    • 터널과지하공간
    • /
    • 제33권4호
    • /
    • pp.255-264
    • /
    • 2023
  • 근래 들어 도심지 지하공간 개발에 대한 수요가 증가함에 따라 도심지 터널계획이 활발히 진행되고 있다. 도심지 구간에는 주민 생활환경을 고려하여 지하정거장이 계획되며, 기존 구조물의 안정성 및 환경훼손 저감 등을 위해 2-Arch터널 정거장을 적용하고 있다. 그러나 도심지 구간은 심한 풍화작용에 따라 불량지반의 심도가 깊게 발달되어 터널 안정성 확보를 고려한 신중한 계획이 요구된다. 이뿐만 아니라 도심지의 복합적인 지반상태를 고려하여 본선터널에 TBM 기계굴착 공법을 적용하는 경우, 기존 NATM형 2-Arch터널과는 시공연계성을 확보할 수 없게 된다. 본 연구에서는 쉴드TBM과 2-Arch터널을 조합한 형태인 TBM선굴진 2-Arch터널을 국내 최초로 적용한 설계사례를 중점으로 기술하고자 하였다. 중앙터널 굴착후 좌우터널 시공을 고려하여 쉴드TBM 세그먼트 설치 및 해체를 위해 고려한 설계사항을 설명하고, 수치해석을 활용한 안정성 검토를 통해 TBM선굴진 2-Arch터널의 설치효과를 검증하였다.

단일층 CVD 그래핀과 유전체 사이의 접착에너지 측정 (Measurements of the Adhesion Energy of CVD-grown Monolayer Graphene on Dielectric Substrates)

  • 서봉현;;석지원
    • Composites Research
    • /
    • 제36권5호
    • /
    • pp.377-382
    • /
    • 2023
  • 그래핀 기반 소자의 성능을 개선하기 위해서는 그래핀과 기판 사이의 계면 상호 작용을 이해하는 것이 중요하다. 본 연구에서는 유전체 기판에 놓인 단일층 그래핀의 접착에너지를 모드 I 시험을 통해 측정하였다. 메탄과 수소 가스 분위기에서 화학기상증착법(CVD)을 통해 구리 포일 위에 대면적 단일층 그래핀을 합성하였다. 합성한 그래핀을 폴리머를 이용한 습식 전사 공정을 통해 유전체 기판 위에 전사하였다. 이중외팔보 형상을 이용한 모드 I 시험을 통해 기판 위에 올려진 그래핀을 기계적으로 박리하였다. 이 때, 얻어지는 힘-변위 곡선을 분석하여 접착에너지를 평가하였는데, 산화실리콘 기판에 대해서는 1.13 ± 0.12 J/m2, 질화실리콘 기판에 대해서는 2.90 ± 0.08 J/m2의 접착에너지를 나타냈다. 본 연구를 통해 유전체 기판 위에 올려진 CVD 그래핀의 계면 상호 작용력에 대해 정량적인 측정을 진행하였다.