• 제목/요약/키워드: composite manufacturing process

검색결과 454건 처리시간 0.024초

보강복합재료원통셸의 최적설계 (Optimal Design of Stiffened Laminate Composite Cylindrical Shells)

  • 원종진
    • 한국생산제조학회지
    • /
    • 제7권6호
    • /
    • pp.12-18
    • /
    • 1998
  • The optimal design for stiffened laminate composite cylindrical shells under combined loads is studied by a nonlinear mathematical search algorithm. The optimal design is accomplished with the CONMIN. several types of buckling modes with maximum allowable stresses and strains are included as constraints in the optimal design process, such as general buckling, panel buckling with either stringers or rings smeared out, local skin buckling, local crippling of stiffener segments. Rectangular or T type stringers and rectangular rings are used for stiffened laminate composite cylindrical shells.

  • PDF

복합재료와 압전재료로 구성된 곡면형 작동기의 열변형 및 잔류응력 해석 (Thermal Deformation and Residual Stress Analysis of Lightweight Piezo-composite Curved Actuator)

  • 정재한;박기훈;박훈철;윤광준
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.126-129
    • /
    • 2001
  • LIPCA (LIghtweight Piezo-composite Curved Actuator) is an actuator device which is lighter than other conventional piezoelectric ceramic type actuator. LIPCA is composed of a piezoelectric ceramic layer and fiber reinforced light composite layers, typically a PZT ceramic layer is sandwiched by a top fiber layer with low CTE (coefficient of thermal expansion) and base layers with high CTE. LIPCA has curved shape like a typical THUNDER (thin-layer composite unimorph feroelectric driver and sensor), but it is lighter an than THUNDER. Since the curved shape of LIPCA is from the thermal deformation during the manufacturing process of unsymmetrically laminated lay-up structure, an analysis for the thermal deformation and residual stresses induced during the manufacturing process is very important for an optimal design to increase the performance of LIPCA. To investigate the thermal deformation behavior and the induced residual stresses of LIPCA at room temperature, the curvatures of LIPCA were measured and compared with those predicted from the analysis using the classical lamination theory. A methodology is being studied to find an optimal stacking sequence and geometry of LIPCA to have larger specific actuating displacement and higher force. The residual stresses induced during the cooling process of the piezo-composite actuators have been calculated. A lay-up geometry for the PZT ceramic layer to have compression stress in the geometrical principal direction has been designed.

  • PDF

FPS 공정에 의한 열경화성 복합재 유효성 검증 연구 (A Study on Property of Thermoset Composite in FPS Process)

  • 김진현;엄문광;변준형;이상관;전영준
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 추계학술발표대회 논문집
    • /
    • pp.241-245
    • /
    • 2004
  • Among the various manufacturing processes of composites, the tape lay-up process of thermoset prepreg has many advantages compared to autoclave or hot press forming. It has a high potential to process automation and continuous fabrication .. Fiber placement developed as a logical combination of filament winding and automated tape placement to overcome some of the limitations of each manufacturing method. Fiber placement uses a compaction device to apply direct contact between the incoming materials in the fiber placement head and Heat is added to the materials at the nip point of the compaction roller. This paper will discuss property of thermoset composite as compaction and heat effect in Automated fiber placement

  • PDF

광경화 3D 프린팅 공정을 위한 실리카 복합소재 합성 및 특성 분석 (Synthesis and Characterization of Silica Composite for Digital Light Processing)

  • 이진욱;남산;황광택;김진호;김응수;한규성
    • 한국재료학회지
    • /
    • 제29권1호
    • /
    • pp.23-29
    • /
    • 2019
  • Three-dimensional(3D) printing is a process for producing complex-shaped 3D objects by repeatedly stacking thin layers according to digital information designed in 3D structures. 3D printing can be classified based on the method and material of additive manufacturing process. Among the various 3D printing methods, digital light processing is an additive manufacturing technique which can fabricate complex 3D structures with high accuracy. Recently, there have been many efforts to use ceramic material for an additive manufacturing process. Generally, ceramic material shows low processability due to its high hardness and strength. The introduction of additive manufacturing techniques into the fabrication of ceramics will improve the low processability and enable the fabrication of complex shapes and parts. In this study, we synthesize silica composite material that can be applied to digital light processing. The rheological and photopolymeric properties of the synthesized silica composite are investigated in detail. 3D objects are also successfully produced using the silica composite and digital light processing.

소형 항공기 주익 복합재료 적용 사례 분석을 통한 개선 방향 연구 (A Case Study for Improving the Manufacturing Process of Composite Main Wing for Small Aircraft)

  • 조일륜
    • 한국항공운항학회지
    • /
    • 제23권1호
    • /
    • pp.96-102
    • /
    • 2015
  • Composite materials are widely used as structural materials for manufacturing an aircraft, due to their : low weight, low thermal expansion coefficient, production efficiency, anisotropy, corrosion resistance and long fatigue life. The range of using composite materials has been extended from the fuselage and the wings to the entire aircraft structure. In this paper, by analyzing the problems which were generated while designing and fabricating aircraft structures using composite materials, the differences between metallic structures and composite structures are described. In addition, the methodological improvement directions on design and fabricating are described.

FPS 공정에 의한 열경화성 복합재 온도분포 연구 (A Study on Temperature Distributions of Thermoset Composite in FPS Process)

  • 전영준;엄문광;변준형;이상관
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.230-233
    • /
    • 2003
  • Among the various manufacturing processes of composites, the tape lay-up process of thermoset prepreg has many advantages compared to autoclave or hot press forming. It has a high potential to process automation and continuous fabrication. In this study, temperature distribution of composite exposed in hot gas was studied numerically and the validity of the analysis was verified by the experiments.

  • PDF

지능형 연성 복합재 구동기 제작을 위한 3D 프린팅-캐스팅 복합 공정 (Hybrid 3D Printing and Casting Manufacturing Process for Fabrication of Smart Soft Composite Actuators)

  • 김민수;송성혁;김형일;안성훈
    • 한국정밀공학회지
    • /
    • 제33권1호
    • /
    • pp.77-83
    • /
    • 2016
  • Intricate deflection requires many conventional actuators (motors, pistons etc.), which can be financially and spatially wasteful. Novel smart soft composite (SSC) actuators have been suggested, but fabrication complexity restricts their widespread use as general-purpose actuators. In this study, a hybrid manufacturing process comprising 3-D printing and casting was developed for automated fabrication of SSC actuators with $200{\mu}m$ precision, using a 3-D printer (3DISON, ROKIT), a simple polymer mixer, and a compressor controller. A method to improve precision is suggested, and the design compensates for deposition and backlash errors (maximum, $170{\mu}m$). A suitable flow rate and tool path are suggested for the polymer casting process. The equipment and process costs proposed here are lower than those of existing 3D printers for a multi-material deposition system and the technique has $200{\mu}m$ precision, which is suitable for fabrication of SSC actuators.

가변성형기술을 활용한 항공기 윙렛용 몰드 제작에 관한 수치적 연구 (Numerical Study of Aircraft Winglet Mold Manufacturing using Flexible Forming)

  • 박지우;구태완;김정;강범수
    • 소성∙가공
    • /
    • 제23권8호
    • /
    • pp.482-488
    • /
    • 2014
  • Flexible forming technology has advantages in sheet metal forming, because it can be implemented to produce various shaped molds using a single apparatus. Due to this advantage, it is possible to apply it to the manufacture of an aircraft winglet mold. Presently, most aircraft winglets are manufactured from composite materials. Therefore, the mold for the curing process is an essential element in the fabrication of such composite materials. Compared to conventional mold forming, flexible forming has some advantages such as reduced manufacturing cost and uniformity of mold thickness. If the thickness of the mold is consistent, then the heat transfer will occur uniformly during the curing process leading to improved formability of the composite material. In the current study, numerical simulations were performed to investigate the possibility of flexible forming for manufacturing of the winglet mold. In order to match the size of the actual product, the shape of objective surface was divided to fit the dimensions of the apparatus. The results from the numerical simulations are compared with the objective surface to verify the accuracy. In conclusion, the current study confirms the feasibility and the potential to manufacture winglet molds by flexible forming.

RTM공법을 이용한 승용차용 복합재료 휠의 표면정도 향상 및 개발 (Improvement of Surface Quality and Development of Composite Wheel for Passenger Cars Manufactured by RTM)

  • 김포진;이대길
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.54-57
    • /
    • 2003
  • Since passenger cars require five wheels including a spare, the weight reduction of wheels without sacrificing performance is important. Recently, the structured components of cars made of steel are replaced by composites. plastics and other nonmetallic materials such as aluminum and magnesium for weight reduction. From these new tried materials are most promising due to their high specific stiffness and specific strength. The composites manufactured by resin transfer molding (RTM) process has not only low cost for the manufacturing but also reduces the lead time and development because the molds for RTM is easy to manufacture. In this work, composite wheels for passenger cars were designed and manufactured by RTM process. Since surface quality of wheels is important for passenger cars, the optimal stacking sequence for composite wheels was selected considering surface quality and mechanical properties. Also, the manufacturing method for the composite mold was depicted.

  • PDF

복합재 하니콤 코어의 형상가공 특성에 관한 실험적 연구 (Experimental Study on Shape Machining Characteristics of Composite Honeycomb Core)

  • 한승우;김해지
    • 한국기계가공학회지
    • /
    • 제13권4호
    • /
    • pp.28-35
    • /
    • 2014
  • A composite honeycomb core is widely used for lightweight aircraft materials. However, the composite honeycomb core coupled with metal-cutting machining processes does not make a very good match. This paper describes an experimental study of the shape-machining characteristics of a composite honeycomb core, in which a five-axis gantry machine is used. The experimental conditions of the offset allowance, tooling condition and feed rate were applied. The shape machining characteristics of a flat surface, a vertical surface, and a concave surface are evaluated by comparing the machining shape and burr characteristics.