• Title/Summary/Keyword: composite kernel

Search Result 32, Processing Time 0.028 seconds

Relation Extraction based on Extended Composite Kernel using Flat Lexical Features (평면적 어휘 자질들을 활용한 확장 혼합 커널 기반 관계 추출)

  • Chai, Sung-Pil;Jeong, Chang-Hoo;Chai, Yun-Soo;Myaeng, Sung-Hyon
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.8
    • /
    • pp.642-652
    • /
    • 2009
  • In order to improve the performance of the existing relation extraction approaches, we propose a method for combining two pivotal concepts which play an important role in classifying semantic relationships between entities in text. Having built a composite kernel-based relation extraction system, which incorporates both entity features and syntactic structured information of relation instances, we define nine classes of lexical features and synthetically apply them to the system. Evaluation on the ACE RDC corpus shows that our approach boosts the effectiveness of the existing composite kernels in relation extraction. It also confirms that by integrating the three important features (entity features, syntactic structures and contextual lexical features), we can improve the performance of a relation extraction process.

Sintering and Characterization of SiC-matrix Composite Including TRISO Particles (TRISO 입자를 포함하는 SiC 복합소결체의 소결 및 특성 평가)

  • Lee, Hyeon-Geun;Kim, Daejong;Park, Ji Yeon;Kim, Weon-Ju
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.418-423
    • /
    • 2014
  • Fully ceramic micro encapsulated (FCM) nuclear fuel is a concept recently proposed for enhancing the stability of nuclear fuel. FCM nuclear fuel consists of tristructural-isotropic (TRISO) fuel particles within a SiC matrix. Each TRISO fuel particle is composed of a $UO_2$ kernel and a PyC/SiC/PyC tri-layer which protects the kernel. The SiC ceramic matrix is created by sintering. In this FCM fuel concept, fission products are protected twice, by the TRISO coating layer and by the SiC ceramic. The SiC ceramic has proven attractive for fuel applications owing to its low neutron-absorption cross-section, excellent irradiation resistivity, and high thermal conductivity. In this study, a SiC-matrix composite containing TRISO particles was sintered by hot pressing with $Al_2O_3-Y_2O_3$ additive system. Various sintering conditions were investigated to obtain a relative density greater than 95%. The internal distribution of TRISO particles within the SiC-matrix composite was observed using an x-ray radiograph. The fracture of the TRISO particles was investigated by means of analysis of the cross-section of the SiC-matrix composite.

A study of fracture of a fibrous composite

  • Mirsalimov, Vagif M.;Hasanov, Shahin H.
    • Structural Engineering and Mechanics
    • /
    • v.73 no.5
    • /
    • pp.585-598
    • /
    • 2020
  • We develop design model within which nucleation and propagation of crack in a fibrous composite is described. It is assumed that under loading, crack initiation and fracture of material happens in the composite. The problem of equilibrium of a composite with embryonic crack is reduced to the solution of the system of nonlinear singular integral equations with the Cauchy type kernel. Normal and tangential forces in the crack nucleation zone are determined from the solution of this system of equations. The crack appearance conditions in the composite are formed with regard to criterion of ultimate stretching of the material's bonds. We study the case when near the fiber, the binder has several arbitrary arranged rectilinear prefracture zones and a crack with interfacial bonds. The proposed computational model allows one to obtain the size and location of the zones of damages (prefracture zones) depending on geometric and mechanical characteristics of the fibrous composite and applied external load. Based on the suggested design model that takes into account the existence of damages (the zones of weakened interparticle bonds of the material) and cracks with end zones in the composite, we worked out a method for calculating the parameters of the composite, at which crack nucleation and crack growth occurs.

Selection of bandwidth for local linear composite quantile regression smoothing (국소 선형 복합 분위수 회귀에서의 평활계수 선택)

  • Jhun, Myoungshic;Kang, Jongkyeong;Bang, Sungwan
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.5
    • /
    • pp.733-745
    • /
    • 2017
  • Local composite quantile regression is a useful non-parametric regression method widely used for its high efficiency. Data smoothing methods using kernel are typically used in the estimation process with performances that rely largely on the smoothing parameter rather than the kernel. However, $L_2$-norm is generally used as criterion to estimate the performance of the regression function. In addition, many studies have been conducted on the selection of smoothing parameters that minimize mean square error (MSE) or mean integrated square error (MISE). In this paper, we explored the optimality of selecting smoothing parameters that determine the performance of non-parametric regression models using local linear composite quantile regression. As evaluation criteria for the choice of smoothing parameter, we used mean absolute error (MAE) and mean integrated absolute error (MIAE), which have not been researched extensively due to mathematical difficulties. We proved the uniqueness of the optimal smoothing parameter based on MAE and MIAE. Furthermore, we compared the optimal smoothing parameter based on the proposed criteria (MAE and MIAE) with existing criteria (MSE and MISE). In this process, the properties of the proposed method were investigated through simulation studies in various situations.

A Study on Goodness-of-fit Test for Density with Unknown Parameters

  • Hang, Changkon;Lee, Minyoung
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.2
    • /
    • pp.483-497
    • /
    • 2001
  • When one fits a parametric density function to a data set, it is usually advisable to test the goodness of the postulated model. In this paper we study the nonparametric tests for testing the null hypothesis against general alternatives, when the null hypothesis specifies the density function up to unknown parameters. We modify the test statistic which was proposed by the first author and his colleagues. Asymptotic distribution of the modified statistic is derived and its performance is compared with some other tests through simulation.

  • PDF

비틀림하의 복합원통에 있는 원주 표면균열에 대한 응력 확대 계수

  • Kim, Yeong-Jong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.9
    • /
    • pp.151-157
    • /
    • 2000
  • Stress intensity factors for the circumferential surface crack of a long composite cylinder under torsion is investigated. The problem is formulated as a singular integral equation of the first kind with a Cauchy type kernel using the integral transform technique. The mode III stress intensity factors at the crack tips are presented when (a) the inner crack tip is away from the interface and (b) the inner crack tip is at the interface.

  • PDF

Behavior of Composite Steel Bridges According to the Concrete Slab Casting Sequences (바닥판 콘크리트 타설순서에 따른 합성형교량의 거동해석)

  • Kwak, Hyo Gyoung;Seo, Young Jae;Jung, Chan Mook;Park, Young Ha
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.2 s.35
    • /
    • pp.233-251
    • /
    • 1998
  • This paper deals with the prediction of behavior of composite girder bridges according to the placing sequences of concrete deck. Based on a degenerate kernel of compliance function in the form of Dirichlet series, the time-dependent behaviors of bridges are simulated, and the layer approach is adopted to determine the equilibrium condition in a section. The variation of bending moments along the bridge length caused by the slab casting sequence is reviewed and correlation studies between section types and placing sequences are conducted with the objective to establish the validity of the continuous placing of concrete deck on the closed steel box-girder which is broadly used in practice.

  • PDF

BLOOD BIOCHEMICAL PROFILE AND HISTOPATHOLOGY OF VITAL ORGANS IN RABBITS FED ON PROCESSED NEEM (Azadirachta indica) KERNEL MEAL INCORPORATED DIETS

  • Gowda, S.K.;Katiyar, R.C.;Sharma, A.K.;Sastry, V.R.B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.4
    • /
    • pp.471-476
    • /
    • 1996
  • Blood biochemical and histopathological changes in vital organs of rabbits were studied after 19 wk of feeding composite diets (75 concentrate : 25 roughage) incorporating either urea (2%, wt/wt) ammoniated or alkali (1.5%, wt/wt) treated neem kernel meal (NKM) replacing peanut meal protein of control diet by either 50 or 100%. The blood biochemical constituents (Haemoglobin, Alanine amino transferase, Aspartate amino transferase, Total protein, Blood urea nitrogen &Cholesterol) in rabbits fed on processed NKM diet at either levels, were comparable to the values of thos on control diet except a lowered (p < 0.05) blood glucose concentration in processed NKM fed rabbits as compared to that in control diet fed ones. Histological examination revealed increased goblet cell activity, stunting of jejunal villi, mild tubular degeneration in kidney and hepatic fibro-cellular reaction in rabbits fed on urea ammoniated and alkali treated NKM diets with less marked changes in the latter. Testicular changes with variable degree of disorganization and vacuolation of spermatogonial cells were noticed in rabbits fed higher levels of urea-ammoniated and alkali treated NKM. Thus, alkali treatment and urea-ammoniation were effective in detoxification of meal, but the processing technology is to be further perfected to prevent cumulative effect of residual neem bitters in long term feeding.

An intelligent health monitoring method for processing data collected from the sensor network of structure

  • Ghiasi, Ramin;Ghasemi, Mohammad Reza
    • Steel and Composite Structures
    • /
    • v.29 no.6
    • /
    • pp.703-716
    • /
    • 2018
  • Rapid detection of damages in civil engineering structures, in order to assess their possible disorders and as a result produce competent decision making, are crucial to ensure their health and ultimately enhance the level of public safety. In traditional intelligent health monitoring methods, the features are manually extracted depending on prior knowledge and diagnostic expertise. Inspired by the idea of unsupervised feature learning that uses artificial intelligence techniques to learn features from raw data, a two-stage learning method is proposed here for intelligent health monitoring of civil engineering structures. In the first stage, $Nystr{\ddot{o}}m$ method is used for automatic feature extraction from structural vibration signals. In the second stage, Moving Kernel Principal Component Analysis (MKPCA) is employed to classify the health conditions based on the extracted features. In this paper, KPCA has been implemented in a new form as Moving KPCA for effectively segmenting large data and for determining the changes, as data are continuously collected. Numerical results revealed that the proposed health monitoring system has a satisfactory performance for detecting the damage scenarios of a three-story frame aluminum structure. Furthermore, the enhanced version of KPCA methods exhibited a significant improvement in sensitivity, accuracy, and effectiveness over conventional methods.