• 제목/요약/키워드: composite joints

검색결과 470건 처리시간 0.021초

복합재 스카프 조인트에서의 마이크로 볼트 보강에 대한 타당성 연구 (Effect of Micro-bolt Reinforcement for Composite Scarf Joint)

  • 이광은;성정원;권진회
    • Composites Research
    • /
    • 제32권1호
    • /
    • pp.37-44
    • /
    • 2019
  • 스카프 접착 조인트를 마이크로 볼트로 보강하였을 때, 볼트의 보강효과를 얻을 수 있는지를 시험으로 연구하였다. 스카프 형상에 따른 조인트 보강효과를 확인하기 위해 3가지 스카프비(1/10, 1/20, 1/30)를 고려하였다. 접착면적에 따른 핀의 밀도를 동일하게 유지하기 위해, 1/10, 1/20, 1/30 스카프비를 가지는 조인트에 각각 16, 32, 48개의 볼트를 보강하였다. 기준값을 획득하기 위해 접착제로만 체결된 조인트와 마이크로 볼트만 사용한 조인트에 대한 시험도 수행하였다. 시험 결과 접착제만 적용한 경우, 각 스카프비(1/10, 1/20, 1/30)에 따른 파손하중은 29.7, 39.6, 44.8 kN로 나타났다. 마이크로 볼트로 보강한 경우 파손하중은 스카프비에 따라 각각 28.4, 37.2, 40.1 kN으로 나타났는데, 순수 접착 조인트 파손하중의 96, 94, 90%에 해당한다. 마이크로 볼트만 사용한 경우, 파손하중은 접착 조인트 인장강도의 13-25%에 불과하였다. 스카프비 1/10 조인트의 피로시험 결과 접착제와 볼트를 동시에 사용한 하이브리드 조인트의 피로강도가 접착제만 사용한 경우의 피로강도보다 증가하였지만, 증가율은 2-3%로 미미하였다. 본 연구를 통해 박리응력이 파손의 주원인이 되는 구조물에서와 달리, 전단응력이 파손의 주원인이 되는 스카프 조인트의 경우 마이크로 볼트의 보강효과는 나타나지 않는 것을 확인하였다.

다물체 차량모델을 이용한 실시간 동역학 시뮬레이션 (Real-time Dynamic Simulation Using Multibody Vehicle Model)

  • 최규재;노기한;유영면
    • 대한기계학회논문집A
    • /
    • 제25권3호
    • /
    • pp.486-494
    • /
    • 2001
  • This paper presents a real-time multibody vehicle dynamic analysis method using recursive Kanes formulation and suspension composite joints. To shorten the computation time of simulation, relative coordinate system is used and the equations of motion are derived using recursive Kanes formulation. Typical suspension systems of vehicles such as MacPherson strut suspension system is modeled by suspension composite joints. The joints are derived and utilized to reduce the computation time of simulation without any degradation of kinematical accuracy of the suspension systems. Using the develop program, a multibody vehicle dynamic model is formed and simulations are performed. Accuracy of the simulation results is compared to the real vehicle field test results. It is found that the simulation results using the proposed method are very accurate and real-time simulation is achieved on a computer with single PowerPC 604 processor.

Seismic performance of the concrete-encased CFST column to RC beam joints: Analytical study

  • Ma, Dan-Yang;Han, Lin-Hai;Zhao, Xiao-Ling;Yang, Wei-Biao
    • Steel and Composite Structures
    • /
    • 제36권5호
    • /
    • pp.533-551
    • /
    • 2020
  • A finite element analysis (FEA) model is established to investigate the concrete-encased concrete-filled steel tubular (CFST) column to reinforced concrete (RC) beam joints under cyclic loading. The feasibility of the FEA model is verified by a set of test results, consisting of the failure modes, the exposed view of connections, the crack distributions and development, and the hysteretic relationships. The full-range analysis is conducted to investigate the stress and strain development process in the composite joint by using this FEA model. The internal force distributions of different components, as well as the deformation distributions, are analyzed under different failure modes. The proposed connections are investigated under dimensional and material parameters, and the proper constructional details of the connections are recommended. Parameters of the beam-column joints, including material strength, confinement factor, reinforcement ratio, diameter of steel tube to sectional width ratio, beam to column linear bending stiffness ratio and beam shear span ratio are evaluated. Furthermore, the key parameters affecting the failure modes and the corresponding parameters ranges are proposed in this paper.

리모델링 아파트의 평면확장시 신/구 슬래브 접합부의 횡방향 하중전달 능력에 관한 실험적 연구 (An Experimental Study on Load Transfer Capacity for the Planar Joints between Existing and New Slab to Extend an Area of Remodelling apartment)

  • 임병호;김승훈;유영찬;최기선;강인석;정재철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.25-28
    • /
    • 2006
  • In general, post-installed dowel bars are used as a shear connector to ensure the composite actions between new slabs and existing slabs in an apartment remodelling constructions expecially for enlarging the interior space outward the existing buildings. But, it has not been checked that the connection performance between existing and new slab is satisfactory not only for the structural safety condition but also the for serviceability and dwelling requirements. In this research, an experimental works were presented to evaluate the load transfer capacity for the planar joints between existing and new slab. The existing slabs were obtained from the existing apartment housing which will be demolished, and were retrofitted with carbon fiber plate. Test results showed that the planar joints with post-installed dowel bars behaved in full composite modes until ultimate capacity of test specimens, so sufficient ultimate and serviceability performance are confirmed.

  • PDF

자동차용 복합재료 드라이브샤프트 설계 및 성형 연구 (Design and Manufacturing of Composite Drive Shaft for Automobiles)

  • 김태욱;이상관;전의진;김완두;이대길
    • 한국자동차공학회논문집
    • /
    • 제1권3호
    • /
    • pp.109-117
    • /
    • 1993
  • A carbon/epoxy composite drive shaft used for the power transmission of the automobiles with steel joints. Compared with the metallic drive shaft, the composite one has the weight saving of 50% with equivalent torsional strength and fatigue characteristics. In this study, the filament winding technique for the composite tube and composite/metal joining technique are estabilished. The performance test of the drive shaft is carried out. The optimal condition of the surface roughness of the steel adherend was $1.5{{\mu}m}$ to $2.5{{\mu}m}$, and the optimal condition of the bonding thickness was 0.15mm. Maximum torque and torsional stiffness of the composite drive shaft manufactured by filament winding process were found to be $210kg{\cdot}m$ and $18.5kg{\cdot}m/deg$, respectively.

  • PDF

Residual static strength of cracked concrete-filled circular steel tubular (CFCST) T-joint

  • Cui, M.J.;Shao, Y.B.
    • Steel and Composite Structures
    • /
    • 제18권4호
    • /
    • pp.1045-1062
    • /
    • 2015
  • Concrete-filled circular t steel tubular joints (CFSTJs) in practice are frequently subjected to fluctuated loadings caused by wind, earthquake and so on. As fatigue crack is sensitive to such cyclic loadings, assessment on performance of CFSTJs with crack-like defect attracts more concerns because both high stress concentration at the brace/chord intersection and welding residual stresses along weld toe cause the materials in the region around the intersection to be more brittle. Once crack initiates and propagates along the weld toe, tri-axial stresses in high gradient around the crack front exist, which may bring brittle fracture failure. Additionally, the stiffness and the load carrying capacity of the CFSTJs with crack may decrease due to the weakened connection at the intersection. To study the behaviour of CFSTJs with initial crack, experimental tests have been carried out on three full-scale CFCST T-joints with same configuration. The three specimens include one uncracked joint and two corresponding cracked joints. Load-displacement and load-deformation curves, failure mode and crack propagation are obtained from the experiment measurement. According to the experimental results, it can be found that he load carrying capacity of the cracked joints is decreased by more than 10% compared with the uncracked joint. The effect of crack depth on the load carrying capacity of CFCST T-joints seems to be slight. The failure mode of the cracked CFCST T-joints represents as plastic yielding rather than brittle fracture through experimental observation.

A practical model for simulating nonlinear behaviour of FRP strengthened RC beam-column joints

  • Shayanfar, Javad;Bengar, Habib Akbarzadeh
    • Steel and Composite Structures
    • /
    • 제27권1호
    • /
    • pp.49-74
    • /
    • 2018
  • Generally, beam-column joints are taken into account as rigid in assessment of seismic performance of reinforced concrete (RC) structures. Experimental and numerical studies have proved that ignoring nonlinearities in the joint core might crucially affect seismic performance of RC structures. On the other hand, to improve seismic behaviour of such structures, several strengthening techniques of beam-column joints have been studied and adopted in practical applications. Among these strengthening techniques, the application of FRP materials has extensively increased, especially in case of exterior RC beam-column joints. In current paper, to simulate the inelastic response in the core of RC beam-column joints strengthened by FRP sheets, a practical joint model has been proposed so that the effect of FRP sheets on characteristics of an RC joint were considered in principal tensile stress-joint rotation relations. To determine these relations, a combination of experimental results and a mechanically-based model has been developed. To verify the proposed model, it was applied to experimental specimens available in the literature. Results revealed that the model could predict inelastic response of as-built and FRP strengthened joints with reasonable precision. The simple analytic procedure and the use of experimentally computed parameters would make the model sufficiently suitable for practical applications.

Experimental study on simplified steel reinforced concrete beam-column joints in construction technology

  • Teraoka, Masaru;Morita, Koji;Sasaki, Satoshi;Katsura, Daisuke
    • Steel and Composite Structures
    • /
    • 제1권3호
    • /
    • pp.295-312
    • /
    • 2001
  • The purpose of this paper is to propose a new type of steel reinforced concrete (SRC) beam-column joints and to examine the structural performance of the proposed joints, which simplify the construction procedure of steel fabrication, welding works, concrete casting and joint strengthening. In the proposed beam-column joints, the steel element of columns forms continuously built-in crossing of H-sections (${\Box}$), with adjacent flanges of column being connected by horizontal stiffeners in a joint at the level of the beam flanges. In addition, simplified lateral reinforcement (${\Box}$) is adopted in a joint to confine the longitudinal reinforcing bars in columns. Experimental and analytical studies have been carried out to estimate the structural performance of the proposed joints. Twelve cruciform specimens and seven SRC beam-column subassemblage specimens were prepared and tested. The following can be concluded from this study: (1) SRC subassemblages with the proposed beam-column joints show adequate seismic performances which are superior to the demand of the current code; (2) The yield and ultimate strength capacities of the beam-to-column connections can be estimated by analysis based on the yield line theory; (3) The skeleton curves and the ultimate shear capacities of the beam-column joint panel are predicted with a fair degree of accuracy by considering a simple stress transfer mechanism.

Experimental Study on Strengthening Transverse Joints between Precast Concrete Slabs

  • Park, Jong-Jin;Cheung, Jin-Hwan;Shin, Su-Bong
    • KCI Concrete Journal
    • /
    • 제12권2호
    • /
    • pp.45-54
    • /
    • 2000
  • Precast R.C. slabs are being used widely for the construction of bridge structures due to their simplicity in construction processes. However, one of the disadvantages in precast R.C. slabs is the existence of transverse joints between two precast slabs. The transverse joints are structurally fragile and the task of strengthening the joints is difficult one due to their structural discontinuity. The aim of this study was to improve the behavior of transverse joints between precast R.C. slabs by introducing prestress with external cables. Three steel-concrete composite bridge specimens, which were prestressed with the external cables anchored on steel girders, were fabricated in the laboratory. Both pretension and post-tension methods were applied to introduce prestressing on the concrete slab with a straight tendon arrangement. Static tests were conducted at service load and ultimate load test was performed to evaluate punching shear capacity of the transverse joint. In this paper, two prestressing methods were tested and their effects were evaluated with respect to the elastic behavior and ultimate loading capacity of the transverse joints.

  • PDF

Seismic behaviour of gravity load designed flush end-plate joints

  • Cassiano, David;D'Aniello, Mario;Rebelo, Carlos
    • Steel and Composite Structures
    • /
    • 제26권5호
    • /
    • pp.621-634
    • /
    • 2018
  • Flush end-plate (FEP) beam-to-column joints are commonly used for gravity load resisting parts in steel multi-storey buildings. However, in seismic resisting structures FEP joints should also provide rotation capacity consistent with the global structural displacements. The current version of EN1993-1-8 recommends a criterion aiming at controlling the thickness of the end-plate in order to avoid brittle failure of the connection, which has been developed for monotonic loading conditions assuming elastic-perfectly plastic behaviour of the connection's components in line with the theory of the component method. Hence, contrary to the design philosophy of the hierarchy of resistances implemented in EN1998-1, the over strength and the hardening of the plastic components are not directly accounted for. In light of these considerations, this paper describes and discusses the results obtained from parametric finite element simulations aiming at investigating the moment-rotation response of FEP joints under cyclic actions. The influence of bolt diameter, thickness of end-plate, number of bolt rows and shape of beam profile on the joint response is discussed and design requirements are proposed to enhance the ductility of the joints.