• Title/Summary/Keyword: composite floors

Search Result 49, Processing Time 0.019 seconds

A study on the comparison of a steel building with braced frames and with RC walls

  • Buyuktaskin, Almila H. Arda
    • Earthquakes and Structures
    • /
    • v.12 no.3
    • /
    • pp.263-270
    • /
    • 2017
  • In this study, two geometrically identical multi-storey steel buildings with different lateral load resisting systems are structurally analyzed under same earthquake conditions and they are compared with respect to their construction costs of their structural systems. One of the systems is a steel structure with eccentrically steel braced frames. The other one is a RC wall-steel frame system, that is a steel framed structure in combination with a reinforced concrete core and shear walls of minimum thickness that the national code allows. As earthquake resisting systems, steel braced frames and reinforced concrete shear walls, for both cases are located on identical places in either building. Floors of both buildings will be of reinforced concrete slabs of same thickness resting on composite beams. The façades are assumed to be covered identically with light-weight aluminum cladding with insulation. Purpose of use for both buildings is an office building of eight stories. When two systems are structurally analyzed by FEM (finite element method) and dimensionally compared, the dual one comes up with almost 34% less cost of construction with respect to their structural systems. This in turn means that, by using a dual system in earthquake zones such as Turkey, for multi-storey steel buildings with RC floors, more economical solutions can be achieved. In addition, slender steel columns and beams will add to that and consequently more space in rooms is achieved.

Improving a current method for predicting walking-induced floor vibration

  • Nguyen, T.H.;Gad, E.F.;Wilson, J.L.;Haritos, N.
    • Steel and Composite Structures
    • /
    • v.13 no.2
    • /
    • pp.139-155
    • /
    • 2012
  • Serviceability rather than strength is the most critical design requirement for vibration-vulnerable floor constructions. Annoying vibrations due to normal walking activity have been observed more frequently on long-span lightweight floor systems in office and commercial retail buildings, raising the need for the development of floor vibration design procedures. This paper highlights some limitations of one of the most commonly used guidelines AISC/CISC DG11, and proposes improvements to this method. Design charts and approximate closed form formulas to estimate the walking response are developed in which various factors relating to the dynamic characteristics of both the floor and the excitation are considered. The accuracy of the proposed formulas and other proposals found in the literature is examined. The proposed modifications would be significant, especially with long-span floors where vibration levels may be underestimated by the current design procedure. The application of the proposed prediction method is illustrated by worked examples that reveal a good agreement with results obtained from finite element analyses and experiments. The presented work would enhance the accuracy and maintain the simplicity and convenience of the design guideline.

The Composite Action of Composite Truss Using H-Shaped Section Steel (H형강을 사용한 합성트러스의 합성효과)

  • Lee, Myung Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.6
    • /
    • pp.637-646
    • /
    • 2009
  • The composite actions of truss beams and floor slabs are not reflected on the design of the truss beam in domestic practice. In this research, basic experiments were conducted on a composite truss with the top and bottom chord members consisting of the H-shaped members. The tests were performed to evaluate the mechanical behaviors of the composite truss on the effects with the shear studs and without them. The specimens consisted of the steel truss and non-composite and composite trusses, and one-point-concentrated loading at the center and equivalent loading were monotonically applied. The composite effects were experimentally identified in the composite trusses using the shear stud connectors.

The Validation of Newly Developed Portable Slipmeter (새롭게 개발된 휴대용 미끄럼 저항 측정기의 성능검증)

  • Kim, Jung-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.1
    • /
    • pp.18-23
    • /
    • 2013
  • The purpose of this study were to develop and validate a prototype slipmeter used on-site floor. The developed slipmeter was dreg sled type. It measured static coefficient of friction(SCOF). The developed slipmeter was evaluated with ASTM 2508-11 which use four different standard surfaces(polished granite, glazed porcelain, vinyl composite tile, and ceramic tile). The SCOF was then measured with developed slipmeter under the three different contaminants and seven different floors. The test results of slipmeter were also compared with those of BOT-3000, floor surface roughness, and human perception. The test results revealed that developed slipmeter successfully ranked all four standard surfaces and differentiated among standard surfaces with varying degrees of slipperiness. The developed slipmeter couldn't properly measure slipperiness under the two kind of floors(polished tile, ground steel plate) and one kind of contaminant(glycerol). The test results of developed slipmeter had stronger correlation with those of BOT-3000 and floor roughness under the water and detergent solution than under the glycerol. The test results of developed slipmeter also showed stronger correlation with those of BOT-3000 and surface roughness than those of human perception. The newly developed slipmeter had been found to give consistent results under the test conditions except for two kind of floors(polished tile, ground steel plate) and one kind of contaminant(glycerol).

An innovative system to increase the longitudinal shear capacity of composite slabs

  • Simoes, Rui;Pereira, Miguel
    • Steel and Composite Structures
    • /
    • v.35 no.4
    • /
    • pp.509-525
    • /
    • 2020
  • Steel-concrete composite slabs with profiled steel sheeting are widely used in the execution of floors in steel and composite buildings. The rapid construction process, the elimination of conventional replaceable shuttering and the reduction of temporary support are, in general, considered the main advantages of this structural system. In slabs with the spans currently used, the longitudinal shear resistance commonly provided by the embossments along the steel sheet tends to be the governing design mode. This paper presents an innovative reinforcing system that increases the longitudinal shear capacity of composite slabs. The system is constituted by a set of transversal reinforcing bars crossing longitudinal stiffeners executed along the upper flanges of the steel sheet profiles. This type of reinforcement takes advantage of the high bending resistance of the composite slabs and increases the slab's ductility. Two experimental programmes were carried out: a small-scale test programme - to study the resistance provided by the reinforcing system in detail - and a full-scale test programme to test simply supported and continuous composite slabs - to assess the efficacy of the proposed reinforcing system on the global behaviour of the slabs. Based on the results of the small-scale tests, an equation to predict the resistance provided by the proposed reinforcing system was established. The present study concludes that the resistance and the ductility of composite slabs using the reinforcing system proposed here are significantly increased.

Walking Load Function for an Estimation of Floor Vibration of a Composite Deck Plate Slab (합성데크플레이트의 진동환경예측을 위한 보행하중 제안)

  • Kim, Hee-Cheul;Choi, June-Ho;Lee, Young-Hak;Kim, De-Joong
    • KIEAE Journal
    • /
    • v.8 no.1
    • /
    • pp.105-110
    • /
    • 2008
  • Most high rise buildings have been constructed with steel structure systems with metal deck floors and concrete topping. Since the mass of the metal deck floor system is relatively thinner than that of the concrete floor system and due to the larger span compared to other floor systems, vibration serviceability problems are frequently occurred. Most of vibration problems are induced by the movement of humans. A walking load function was proposed for the better estimation of composite deck floor vibration based on site measurements in this paper.

Behavior of multi-story steel buildings under dynamic column loss scenarios

  • Hoffman, Seth T.;Fahnestock, Larry A.
    • Steel and Composite Structures
    • /
    • v.11 no.2
    • /
    • pp.149-168
    • /
    • 2011
  • This paper presents a computational study of column loss scenarios for typical multi-story steel buildings with perimeter moment frames and composite steel-concrete floors. Two prototype buildings (three-story and ten-story) were represented using three-dimensional nonlinear finite element models and explicit dynamic analysis was used to simulate instantaneous loss of a first-story column. Twelve individual column loss scenarios were investigated in the three-story building and four in the ten-story building. This study provides insight into: three-dimensional load redistribution patterns; demands on the steel deck, concrete slab, connections and members; and the impact of framing configuration, building height and column loss location. In the dynamic simulations, demands were least severe for perimeter columns within a moment frame, but the structures also exhibited significant load redistribution for interior column loss scenarios that had no moment connectivity. Composite action was observed to be an important load redistribution mechanism following column loss and the concrete slab and steel deck were subjected to high localized stresses as a result of the composite action. In general, the steel buildings that were evaluated in this study demonstrated appreciable robustness.

시공중인 합성바닥슬래브의 처짐보정에 대한 수치적 연구

  • 김영찬;이정헌
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2002.05a
    • /
    • pp.293-298
    • /
    • 2002
  • In the composite deck system, beams and deck plates deflect during construction. This lens-shaped deflection may cause problems in the serviceability of a building. Therefore, it should be compensated to be level. Several methods for leveling of floor slab are available, such as increasing stiffness of structural members, pouring additional concrete. In this study, additional weight and volume o( concrete for level compensation are examined for various size of floors.

  • PDF

Vibration behavior of large span composite steel bar truss-reinforced concrete floor due to human activity

  • Cao, Liang;Li, Jiang;Zheng, Xing;Chen, Y. Frank
    • Steel and Composite Structures
    • /
    • v.37 no.4
    • /
    • pp.391-404
    • /
    • 2020
  • Human-induced vibration could present a serious serviceability problem for large-span and/or lightweight floors using the high-strength material. This paper presents the results of heel-drop, jumping, and walking tests on a large-span composite steel rebar truss-reinforced concrete (CSBTRC) floor. The effects of human activities on the floor vibration behavior were investigated considering the parameters of peak acceleration, root-mean-square acceleration, maximum transient vibration value (MTVV), fundamental frequency, and damping ratio. The measured field test data were validated with the finite element and theoretical analysis results. A comprehensive comparison between the test results and current design codes was carried out. Based on the classical plate theory, a rational and simplified formula for determining the fundamental frequency for the CSBTRC floor is derived. Secondly, appropriate coefficients (βrp) correlating the MTVV with peak acceleration are suggested for heel-drop, jumping, and walking excitations. Lastly, the linear oscillator model (LOM) is adopted to establish the governing equations for the human-structure interaction (HSI). The dynamic characteristics of the LOM (sprung mass, equivalent stiffness, and equivalent damping ratio) are determined by comparing the theoretical and experimental acceleration responses. The HSI effect will increase the acceleration response.

Optimization of structural elements of transport vehicles in order to reduce weight and fuel consumption

  • Kovacs, Gyorgy
    • Structural Engineering and Mechanics
    • /
    • v.71 no.3
    • /
    • pp.283-290
    • /
    • 2019
  • In global competition manufacturing companies have to produce modern, new constructions from advanced materials in order to increase competitiveness. The aim of my research was to develop a new composite cellular plate structure, which can be primarily used for structural elements of road, rail, water and air transport vehicles (e.g. vehicle bodies, ship floors). The new structure is novel and innovative, because all materials of the components of the newly developed structure are composites (laminated Carbon Fiber Reinforced Plastic (CFRP) deck plates with pultruded Glass Fiber Reinforced Plastic (GFRP) stiffeners), furthermore combines the characteristics of sandwich and cellular plate structures. The material of the structure is much more advantageous than traditional steel materials, due mainly to its low density, resulting in weight savings, causing lower fuel consumption and less environmental damage. In the study the optimal construction of a given geometry of a structural element of a road truck trailer body was defined by single- and multi-objective optimization (minimal cost and weight). During the single-objective optimization the Flexible Tolerance Optimization method, while during the multi-objective optimization the Particle Swarm Optimization method were used. Seven design constraints were considered: maximum deflection of the structure, buckling of the composite plates, buckling of the stiffeners, stress in the composite plates, stress in the stiffeners, eigenfrequency of the structure, size constraint for design variables. It was confirmed that the developed structure can be used principally as structural elements of transport vehicles and unit load devices (containers) and can be applied also in building construction.