• Title/Summary/Keyword: composite facings

Search Result 10, Processing Time 0.025 seconds

Analysis of Sandwich Plates with Composite Facings based on Zig-Zag Models (지그재그 모델에 의한 복합샌드위치평판의 해석)

  • Ji, Hyo Seon;Chang, Suk Yun
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.6
    • /
    • pp.749-758
    • /
    • 2000
  • This study presents a governing equations of bending behavior of sandwich plates with thick metal, polymer composite facings. Based on zig-zag models for through thickness deformations, the transverse shear deformation of composite facings is included. All edges of plate are assumed to be simply supported. Results of the bending analysis under lateral loads are presented for the influence of various lay up sequences of antisymmetric angle-ply laminated facings. The accuracy of the approach is ascertained by comparing solutions from the sandwich plates theory with composite facings to the laminated plates theory. Since the present analysis considers the bending stiffness of the core and also the transverse shear deformations of the laminated facings, the proposed method showed higher than that calculated according to the general laminated plates theory. The information presented might be useful to design sandwich plates structure with metal, polymer matrix composite facings.

  • PDF

Analysis of Composite Sandwich Plates with a Local Shear Deformations (국부전단변형을 고려한 복합샌드위치 평판의 해석)

  • JI, Hyo Seon;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.1 s.34
    • /
    • pp.11-24
    • /
    • 1998
  • The composite sandwich plate is constructed by combining two laminated facings with high strength and a thick core of light weight material. The governing equations for the analysis of bending of simply supported sandwich plates with laminated facings are derived and analysed using the analytical method including the local shear deformations. The accuracy of the approach is ascertained by comparing solutions from the sandwich plate theory with composite facings to the laminate plate theory. Since the present analysis considers the bending stiffness of the core and also the transverse shear deformations of the laminated facings, it is expected that the analysis is capable to analyze the general anisotropic laminated plates with global shear deformations.

  • PDF

Fatigue Properties of Glass Fiber Reinforced Polymer Composite Panels (유리섬유보강 폴리머 복합패널의 피로특성)

  • Yeon, Kyu-Seok;Kim, Soo-Bo;Ryu, Neung-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.6
    • /
    • pp.29-36
    • /
    • 2004
  • In this study, The fatigue properties of the GFRP composite panels of which core was made of the polymer mortar and both facings were reinforced by the high-tensile GFRP were surveyed. Composite-panel specimens consisted of polymer mortar core and GFRP compressive and tensile sides with various thickness were produced for an experimental study. Flexural fatigue tests were conducted to examine the correlation between the fatigue load and the fatigue life for various thickness of core and facings, and its results are presented. The correlation obtained in this study between the fatigue load and the fatigue life for various thickness arc in good agreement with the modified Miner's law.

Flexural Cnaracteristics of Polymer Concrete Sandwich Constructions (폴리머 콘크리트 샌드위치 구조재의 휨특성)

  • 연규석
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.2
    • /
    • pp.125-134
    • /
    • 1989
  • This study was conducted to investigate the flexural behaviour of sandwich constructions with cement concrete core and polymer concrete facings. Six different cross-sectional shapes using epoxy based polymer concrete facings were investigated. Some of the results from the static tests are given including the load-deflection responses, load-strain relationships, ultimate moment, and mode of failure. From the. results the following conclusions can be made. 1. The various strengths of polymer concrete were very high compared to the strengths for portland cement concrete, while modulus of elasticity assumed an aspect of contrast. 2. The thickness of core and facing exerted a great influence on the deflection and ultimate strenght of polymer concrete sandwich constructions. 3. The variation shape of deflection and strain depend on loading were a very close approximation to the straight line. The ultimate strain of polymer concrete at the end of tensile side were ranged from 625x10-6 to 766x10-6 and these values increased in proportion to the decrease of thickness of core and facings. 4. The ultimate moments of polymer sandwich constructions were 3 to 4 times that of cement concrete constructions which was transformed same section. It should he noted that polymer concrete have an effect on the reinforcement of weak constructions. 5. Further tests are neede to investigate the shear strain of constructions, and thermal expansion, shrinkage and creep of cement and polymer concrete which were composite materials of sandwich constructions.

  • PDF

Mechanical behaviour of a syntactic foam/glass fibre composite sandwich: experimental results

  • Papa, Enrico;Corigliano, Alberto;Rizzi, Egidio
    • Structural Engineering and Mechanics
    • /
    • v.12 no.2
    • /
    • pp.169-188
    • /
    • 2001
  • This note presents the main results of an experimental investigation into the mechanical behaviour of a composite sandwich conceived as a lightweight material for naval engineering applications. The sandwich structure is formed by a three-dimensional glass fibre/polymer matrix fabric with transverse piles interconnecting the skins; the core is filled with a polymer matrix/glass microspheres syntactic foam; additional Glass Fibre Reinforced Plastics extra-skins are laminated on the external facings of the filled fabric. The main features of the experimental tests on syntactic foam, skins and sandwich panels are presented and discussed, with focus on both in-plane and out-of-plane responses. This work is part of a broader research investigation aimed at a complete characterisation, both experimental and numerical, of the complex mechanical behaviour of this composite sandwich.

Fabrication and Its Evaluation of the Light-weight Composite Pallet Plank for an Assembly Line of LCD/PDP by using Honeycomb Sandwich Panel (하니컴 샌드위치 Panel을 이용한 LCD/PDP 생산 공정용 경량 고기능성 복합 신소재 파렛트 제조 및 그 특성 평가)

  • Kim, Yun-Hae;Choi, Byung-Geun;Son, Jin-Ho;Jo, Young-Dae;Eum, Soo-Hyun;Woo, Byung-Hun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.304-310
    • /
    • 2006
  • A typical honeycomb sandwich panel consists of two thin, high-strength facings bonded to a thick, light-weight core. Each component by itself is relatively weak and flexible, but when it combined in a sandwich panel they produce a structure that is stiff, strong, and lightweight. To prove the suitability the honeycomb sandwich structure with prepreg, the mechanical properties of the skin materials and honeycomb sandwich structure were evaluated with the static strength tests. Accordingly, the honeycomb sandwich structure made by autoclave process is available for a panel on LCD/PDP assembly line.

Controlling the Hardness and Tribological Behaviour of Non-asbestos Brake Lining Materials for Automobiles

  • Mathur, R.B.;Thiyagarajan, P.;Dhami, T.L.
    • Carbon letters
    • /
    • v.5 no.1
    • /
    • pp.6-11
    • /
    • 2004
  • In spite of unparalleled combination of essential material properties for brake linings and clutch facings, replacement for asbestos is seriously called for since it is a health hazard. Once asbestos is replaced with other material then composition and properties of brake pad changes. In certain cases hardness of the material may be high enough to affect the rotor material. In this study, hardness of the brake pad has been controlled using suitable reinforcement materials like glass, carbon and Kevlar pulp. Brake pad formulations were made using CNSL (cashew net shell liquid) modified phenolic resin as a binder, graphite or cashew dust as a friction modifier and barium sulphate, talc and wollastonite as fillers. Influence of each component on the hardness value has been studied and a proper formulation has been arrived at to obtain hardness values around 35 on Scleroscopic scale. Friction and wear properties of the respective brake pad materials have been measured on a dynamometer and their performance was evaluated.

  • PDF

Performance Evaluation on Static Loading and Cyclic Loading for Structural Insulated Panels (구조용단열패널의 정적가력과 반복가력 성능 평가)

  • Nah, Hwan-Seon;Lee, Hyeon-Ju;Choi, Sung-Mo
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.1
    • /
    • pp.33-39
    • /
    • 2013
  • Structural insulated panels, structurally performed panels consisting of a plastic insulation bonded between two structural panel facings, are one of emerging products with a viewpoint of its energy and construction efficiencies. These components are applicable to fabricated wood structures. In Korea, there are few technical documents regulated structural performance and engineering criteria in domestic market. This study was conducted to identify fundamental performance of both monotonic load and quasi static cyclic load for SIPs in shear wall application. Static test results showed that maximum load was 44.3kN, allowable shear load was 6.1kN/m, shear stiffness was 1.23 M N/m, and ductility ratio was 3.6. Cyclic test was conducted by two kinds of specimens : single panel and double panels. Cyclic test results, which were equivalent to static test results, showed that maximum load was 45.42kN, allowable shear load was 6.3kN/m. Furthermore the accumulated energy dissipation capability for double panels was as 2.3 times as that for single panel. From performance of structural tests, it was recommended that the allowable shear load for panels was at least 6.1kN/m.

The Optimum Design of the Light-weight Composite Pallet Plank for Assembly Line of LCD/PDP by using Honeycomb Sandwich Panel (하니컴 샌드위치 Panel을 이용한 LCD/PDP생산공정용 고기능성 복합 신소재 파렛트의 최적설계)

  • Kim, Y.H.;Choi, B.G.;Son, J.H.;Cho, Y.D.;Eum, S.H.;Woo, B.H.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.388-394
    • /
    • 2005
  • A typical honeycomb sandwich panel consists of two thin, high-strength facings bonded to a thick, light-weight core. Each component by itself is relatively weak and flexible, but when it combind in a sandwich panel they produce a structure that is stiff, strong, and lightweight. In addition to use in honeycomb sandwich panels, honeycomb is used for energy absorption, radio frequency shielding, light diffusion, and to direct air flow.Accordingly, the usage of honeycomb sandwich structure is very widely applied to the aircraft, the automobile, and marine industry, etc., because of these advantages. Generally, this honeycomb sandwich structure is manufactured by autoclave process.In this study, the honeycomb sandwich structure was produced by prepreg. To prove the suitability the honeycomb sandwich structure with prepreg, The optimum design of the skin materials and honeycomb sandwich structure were evaluated with the theory of stress analysis.

  • PDF

Evaluation on Structural Performance of Structural Insulated Panels in Wall Application (벽식 구조체 적용을 위한 구조용단열패널 성능 평가)

  • Nah, Hwan-Seon;Lee, Hyeon-Ju;Lee, Cheol-Hee;Hwang, Sung-Wook;Jo, Hye-Jin;Choi, Sung-Mo
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.2
    • /
    • pp.19-27
    • /
    • 2012
  • Structural insulated panels, which are structurally performed panels consisting of a plastic insulation bonded between two structural panel facings are one of emerging products with a viewpoint of its energy and construction efficiencies. These components are applicable to fabricated wood structures. By now, there are few technical documents regulated structural performance and engineering criteria in domestic market. This study was conducted to suggest fundamental reports such as racking resistance, axial capacity, transverse load capacity, and lintel load capacity for SIPs. Test results showed that maximum load was 44.3kN, allowable load was 14.7kN for racking resistance, and that maximum load was 137.6kN, allowable load was 37.4kN/m for axial compression capacity. For transverse load capacity, test results showed $10.3kN/m^2$ of maximum load, $3.4kN/m^2$ of allowable load. For lintel load capacity for SIPs dependent to lengths, allowable loads were 20.4kN for 600mm long lintel, 23.9kN for 1,200mm long lintel, 19.3kN for 1,800mm long lintel, and 2,400mm long lintel had 14.1kN of allowable load. In the near future, when the allowable load for wall application is established, SIPs is considered to substitute the existent post-and-lintel construction to bearing wall structure.