• Title/Summary/Keyword: composite element

Search Result 3,033, Processing Time 0.027 seconds

Analysis of Buckling Causes and Establishment of Reinforcement Method for Support of Plate Girder Bridge (플레이트 거더교 지점부의 좌굴발생 원인분석 및 보강방안 수립)

  • Ok, Jae-Ho;Yhim, Sung-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.520-526
    • /
    • 2019
  • I-type girders are widely applied as very economical sections in plate girder bridges. There has been research on developing composite laminated panels, curved plates reinforced with closed-end ribs, and new forms of ribs and compression flanges for steel box girders. However, there is a limitation in analyzing the exact cause of local buckling caused by an I-type girder's webs. Therefore, an I-type girder's web was modeled using the finite element analysis program LUSAS 17.0 before and after reinforcement. We checked for the minimum thickness criteria presented in the Korea highway bridge design code, and the cause of buckling after performing a linear elastic buckling analysis of dead and live loads was analyzed. Before reinforcement, an eigenvalue (λ1) at the 1st mode was 0.7025, the critical buckling load was smaller than the applied load, and there is a buckling. After reinforcement, when applying vertical and horizontal stiffeners to the web part of the girder at support, a Nodal line was formed, the eigenvalue was 1.5272, and buckling stability was secured. To improve buckling trace of the girder at the support, an additional plate was applied to the web at the support to ensure visual and structural safety, but buckling occurs at center of web. The eigenvalue (λ1) was 3.5299, and this method is efficient for reinforcing the web of the support.

Analytical Evaluations of the Retrofit Performances of Concrete Wall Structures Subjected to Blast Load (폭발하중을 받는 콘크리트 벽체 구조물의 보강 성능에 대한 해석적 분석)

  • Kim, Ho-Jin;Nam, Jin-Won;Kim, Sung-Bae;Kim, Jang-Ho;Byun, Keun-Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.241-250
    • /
    • 2007
  • In case of retrofitting a concrete structure subjected to blast load by using retrofit materials such as FRP (fiber-reinforced polymer), appropriate ductility as well as raising stiffness must be obtained. But the previous approximate and simplified models, which have been generally used in the design and analysis of structures subjected to blast load, cannot accurately consider effects on retrofit materials. Problems on the accuracy and reliability of analysis results have also been pointed out. In addition, as the response of concrete and reinforcement on dynamic load is different from that on static load, it is not appropriate to use material properties defined in the previous static or quasi-static conditions to in calculating the response on the blast load. In this study, therefore, an accurate HFPB (high fidelity physics based) finite element analysis technique, which includes material models considering strength increase, and strain rate effect on blast load with very fast loading velocity, has been suggested using LS-DYNA, an explicit analysis program. Through the suggested analysis technique, the behavior on the blast load of retrofitted concrete walls using CFRP (carbon fiber-reinforced polymer) and GFRP (glass fiber-reinforced polymer) have been analyzed, and the retrofit capacity analysis has also been carried out by comparing with the analysis results of a wall without retrofit. As a result of the analysis, the retrofit capacity showing an approximate $26{\sim}28%$ reduction of maximum deflection, according to the retrofit, was confirmed, and it is judged ate suggested analysis technique can be effectively applicable in evaluating effectiveness of retrofit materials and techniques.

Assessment of System Reliability and Capacity-Rating of Composite Steel Box-Girder Highway Bridges (합성 강 상자형 도로교의 체계신뢰성 해석 및 안전도평가)

  • Cho, Hyo Nam;Lee, Seung Jae;Kang, Kyoung Koo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.51-59
    • /
    • 1993
  • This paper develops practical and realistic reliability models and methods for the evaluation of system-reliability and system reliability-based rating of various types of box-girder bridge superstructures. The strength limit state model for box-girder bridges suggested in the paper are based on not only the basic flexural strength but also the strength interaction equations which simultaneously take into account flexure, shear and torsion. And the system reliability problem of box-girder superstructure is formulated as parallel-series models obtained from the FMA(Failure Mode Approach) based on major failure mechanisms or critical failure states of each girder. In the paper, an improved IST(Importance Sampling Technique) simulation algorithm is used for the system reliability analysis of the proposed models. This paper proposes a practical but rational approach for the evaluation of capacity rating in terms of the equivalent system-capacity rating corresponding to the estimated system-reliability index which is derived based on the concept of the equivalent FOSM(First Order Second Moment) form of system reliability index. The results of the reliability evaluation and rating of existing bridges indicate that the reserved reliability and capacity rating at system level are significantly different from those of element reliability or conventional methods especially in the case of highly redundant box-girder bridges.

  • PDF

Numerical Study on Inverse Analysis Based on Levenberg-Marquardt Method to Predict Mode-I Adhesive Behavior of Fiber Metal Laminate (섬유금속적층판의 모드 I 접합 거동 예측을 위한 Levenberg-Marquardt 기법 기반의 역해석 기법에 관한 수치적 연구)

  • Park, Eu-Tteum;Lee, Youngheon;Kim, Jeong;Kang, Beom-Soo;Song, Woojin
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.177-185
    • /
    • 2018
  • Fiber metal laminate (FML) is a type of hybrid composites which consist of metallic and fiber-reinforced plastic sheets. As the FML has a drawback of the delamination that is a failure of the interfacial adhesive layer, the nominal stresses and the energy release rates should be determined to identify the delamination behavior. However, it is difficult to derive the nominal stresses and the energy release rates since the operating temperature of the equipment is restricted. For this reason, the objective of this paper is to predict the mode-I nominal stress and the mode-I energy release rate of the adhesive layer using the inverse analysis based on the Levenberg-Marquardt method. First, the mode-I nominal stress was assumed as the tensile strength of the adhesive layer, and the mode-I energy release rate was obtained from the double cantilever beam test. Next, the finite element method was applied to predict the mode-I delamination behavior. Finally, the mode-I nominal stress and the mode-I energy release rate were predicted by the inverse analysis. In addition, the convergence of the parameters was validated by trying to input two cases of the initial parameters. Consequently, it is noted that the inverse analysis can predict the mode-I delamination behavior, and the two input parameters were converged to similar values.

Bearing resistance design of stainless steel bolted connections at ambient and elevated temperatures

  • Cai, Yancheng;Young, Ben
    • Steel and Composite Structures
    • /
    • v.29 no.2
    • /
    • pp.273-286
    • /
    • 2018
  • In recent years, significant progress has been made in developing design rules for stainless steel members, while the investigation on bolted connections is relatively limited, in particular at elevated temperatures. In this paper, experimental and numerical investigations on stainless steel bolted connections at ambient and elevated temperatures from the literature were reviewed. Firstly, the research program that focused on structural behavior of cold-formed stainless steel (CFSS) bolted connections at elevated temperatures carried out by the authors were summarized. Over 400 CFSS single shear and double shear bolted connection specimens were tested. The tests were conducted in the temperature ranged from 22 to $950^{\circ}C$ using both steady state and transient state test methods. It is shown that the connection strengths decrease as the temperature increases in the similar manner for the steady state test results and the transient state test results. Generally, the deterioration of the connection strengths showed a similar tendency of reduction to those of the material properties for the same type of stainless steel regardless of different connection types and different configurations. It is also found that the austenitic stainless steel EN 1.4571 generally has better resistance than the stainless steel EN 1.4301 and EN 1.4162 for bolted connections at elevated temperatures. Secondly, extensive parametric studies that included 450 specimens were performed using the verified finite element models. Based on both the experimental and numerical results, bearing factors are proposed for bearing resistances of CFSS single shear and double shear bolted connections that subjected to bearing failure in the temperature ranged from 22 to $950^{\circ}C$. The bearing resistances of bolted connections obtained from the tests and numerical analyses were compared with the nominal strengths calculated from the current international stainless steel specifications, and also compared with the predicted strengths calculated using the proposed design equations. It is shown that the proposed design equations are generally more accurate and reliable than the current design rules in predicting the bearing resistances of CFSS (EN 1.4301, EN 1.4571 and EN 1.4162) bolted connections at elevated temperatures. Lastly, the proposed design rules were further assessed by the available 58 results of stainless steel bolted connections subjected to bearing failure in the literature. It is found that the proposed design rules are also applicable to the bearing resistance design of other stainless steel grades, including austenitic stainless steel (EN 1.4306), ferritic stainless steel (EN 1.4016) and duplex stainless steel (EN 1.4462).

Analysis on the Reduction of Phosphorus Release in River and Lake Sediments through Application of Capping Technology (Capping 기술을 이용한 하천 및 호소 퇴적토의 인 용출 저감 효과 분석)

  • Kim, Seog-Ku;Yun, Sang-Leen
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.11
    • /
    • pp.781-790
    • /
    • 2014
  • Contaminants such as organic matters, nutrients and toxic chemicals in rivers and lakes with a weak flow rate are first removed from the water and accumulated in the sediments. Subsequently, they are released into the water column again, posing direct/indirect adverse effects on the water quality and aquatic ecosystems. In particular, phosphorus is known to accelerate the eutrophication phenomenon when it is released into the water column via physical disturbance and biological/chemical actions as one of important materials that determine the primary production of aquatic ecosystems and an element that is stored mainly in the sediments in the process of material circulation in the body of water. In this study, the effect on reducing phosphorus release in sediments was analyzed by applying different capping materials to lake water, where the effect of aquatic microorganisms is taken into account, and to distilled water, where the effect of microorganisms is excluded. The experimental results showed that capping with chemical materials such as Fe-gypsum and $SiO_2$-gypsum further reduced the phosphorus release by at least 40% compared to the control case. Composite materials like granule gypsum+Sand showed over 50% phosphorus release reduction effect. Therefore, it is determined that capping with chemical materials such as granule-gypsum and eco-friendly materials such as sand is effective in reducing phosphorus release. The changes in phosphorus properties in the sediments before and after capping treatment showed that gypsum input helped to change the phosphorus that is present in lake sediments into apatite-P, a stable form that makes phosphorus release difficult. Based on the above results, it is expected that the application of capping technology will contribute to improving the efficiency of reducing phosphorus release that occurs in river and lake sediments.

GEOMETRIC NINLINEAR ANALYSIS OF UNERGROUND LAMINATED COMPISITE PIPES (기하학적 비선형을 고려한 지하매설 복합재료 파이프의 해석)

  • 김덕현;이인원;변문주
    • Computational Structural Engineering
    • /
    • v.2 no.1
    • /
    • pp.65-70
    • /
    • 1989
  • An analytical study was conducted using the Galerkin technique to determine behaviour of thin fibrereinforced and laminated composite pipes under soil pressure. Geometric nonlinearity and material linearity have been assumed. It is assumed that vertical and lateral soil pressure are proportional to the depth and lateral displacement of the pipe respectively. It is also assumed that radial shear stress is negligible because the ratio of thickness to the radius of pipe is very small. The above results are verified by the finite element analysis.

  • PDF

Estimation of Seismic Performance and Earthquake Damage Ratio of Existing Reinforced Concrete Buildings in Japan (일본의 기존 철근콘트리트건물의 내진성능 및 지진피해율의 평가)

  • 이강석;이리형
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.1
    • /
    • pp.63-74
    • /
    • 2000
  • The main objective of this paper is to apply as the basic data for development of a methodology to discuss the future earthquake preparedness measures in Korea by investigating the concept and applicabilities of the Japanese Standard for Evaluation of Seismic Performance of Existing RC Buildings developed in Japan among the methodologies of all the countries of the world. This paper describes the seismic performance, Is-index, of existing RC buildings in Tokyo, Japan evaluated by the Japanese Standard, also the relationships between Is-index distribution of existing RC buildings in Tokyo and that of Shizuoka and Chiba Prefecture reported already in reference[4][5][6] are investigated. And from the comparison with Is-index to buildings damaged by earthquakes experienced in Japan, the damage ratio due to severe earthquake of 3 districts mentioned above is estimated based on the probabilistic point of view. The results of this study can be utilized to identify urgently required earthquake preparedness measures with highest priority in existing RC buildings, and the methodology to evaluate the seismic performance of existing RC buildings in Japan, statistics analysis method and the methodology to estimate earthquake damage ratio based on the probabilistic point of view shown in this study can be recommended to develop a methodology to discuss the future earthquake preparedness measures in Korea.

  • PDF

Petrology of the Volcanic Rocks in Geoje Island, South Korea (거제도 화산암의 암석학적 연구)

  • 윤성효;이준동;이상원;고정선;서윤지
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.1-18
    • /
    • 1997
  • Andesitic pyroclastics and lava flows are deposited as a part of composite volcanoes by Cretaceous volcanic activity in Geojae Island, off the coast of Korea. The andesitic pyroclastics are composed of tuff breccia and lapilli tuff minor intercalated tuff. Lava flows are divided into dense and porphyritic andesite containing phenocrysts of plagioclase, pyroxene, and/or hornblende. The andesitic rocks represent charactersitcs of carc-alkaline BAR association with basalt, basaltic andesite, andesite, and dacite to rhyolite. Major element variations of the volcanic rocks show that $Al_2O_3$, total FeO, CaO, MgO and $TiO_2$ decrease with increasing $SiO_2$ but $K_2O$ and total alkalis increase, and represent differntiation trend of calc-alkaline rock series. In spider diagram, contents of Sr, K, Rb, Ba, and Th are relatively high, but contents of Nb, P, Ti and Cr are low. These petrochemcial characteristics are similar to those of rocks from island arc or continental margein related to plate subduction. Chondrite-normalized REE patterns of volcanic rocks are paralle to subparallel, with LREE enriched than HREE, and show gradual increase of negative Eu anomaly from basalt to dacite and rhyolite, suggesting comagmatic fractional crystallization with minor effects of assimilation and magma mixing. Andesitic rocks are assumed medium-K orogenic andesites that formed in the tectomagmatic environment of subduction zone under normal continental margin arc.

  • PDF

Effect of Additional Elements on Efficiency of Al and Zn Sacrificial Anode for Naval Vessels (함정용 Al 및 Zn 희생양극의 효율에 미치는 첨가원소 영향)

  • Choi, Woo-Suk;Park, Kyung-Chul;Kim, Byeong-Ho
    • Journal of Navigation and Port Research
    • /
    • v.39 no.4
    • /
    • pp.277-283
    • /
    • 2015
  • MS(Mild Steel), HTS(High Tensile Steel), HYS(High Yield Steel), AL(Aluminum Alloy) and Composite Materials are used for vessels. Steel Materials are mostly used for vessels because body of a ship have to perform the basic functions such as watertight, preserving the strength and supporting the equipments. The vessels primarily carry out a mission at ocean, so that body of a ship is necessarily rusted. There are several methods to protect the corrosion of vessels such as painting, SACP(sacrificial anode cathodic protection) and ICCP(impressed current cathodic protection). For the sacrificial anode cathodic protection, Al and Zn alloys are normally used. Heavy metals are added to the Al and Zn Alloys for improving the corrosion properties but they are so harmful to the human and environment. Therefore, the use of these heavy metals is strictly regulated in the world. In this paper, Al and Zn Alloys are made by adding the trace elements(Ma, Ca, Ce and Sn) which is not harmful to the human and environment. SEM, XRD, Potentiodynamic Polarization test and Current Efficiency test are conducted for evaluation of Al and Zn Alloys. As a result of the experiment, Al-3Zn-0.6Sn and Zn-3Sn Alloys are more efficient than other Alloys.