• Title/Summary/Keyword: composite bridges

Search Result 444, Processing Time 0.034 seconds

A FEASIBILITY STUDY ON THE APPLICATION OF THE KNITTED GLASS FABRIC COMPOSITES TO FIXED PROSTHODONTIC RESTORATION IN DENTISTRY (Knitted Glass Fabric 강화 복합레진을 사용한 고정성 치과보철물에 대한 적용성 평가)

  • Chung Jae-Min;Lee Kyu-Bok;Jo Kwang-Hun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.5
    • /
    • pp.429-440
    • /
    • 2002
  • Current dental restorations present a relatively weak resistance to fracture. Owing to their unique mechanical properties, fibre-reinforced polymers are now being considered. Unidirectional or woven continuous fibres, made of glass, polyethylene, carbon or Kevlar, have been evaluated. This study focused on the use of glass fibre knitted fabrics to reinforce acrylate resins, in order to investigate the possibility to construct single crowns as well as three unit bridges. Some points affecting the final composite system were tested ; 1) static strength, with focus on the stress transfer under a occlusal contact point ; 2) modelling of a three nit bridge ; 3) fatigue strength as a posterior three unit bridge material. The study demonstrated that knitted fabric reinforcements are showing an interesting compromise between stiffness, static strength for single crown. For three unit bridge applications in the posterior arch, however knitted glass fabric reinforcements were not strong enough in fatigue An additional reinforcement in the posterior arch fixed partial denture design was recommended.

Elastic Interactive Shear Buckling Behavior of Trapezoidally Corrugated Steel Webs (제형파형강판 복부판의 탄성 연성전단좌굴 거동)

  • Yi, Jong Won;Gill, Heung Bae;Lee, Hak Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.6 s.79
    • /
    • pp.707-715
    • /
    • 2005
  • Corrugated webs have been used for composite prestressed concrete box girder bridges. Innovative steel plate girders using corrugated webs have been proposed. It has been found that analytical and experimental researches conducted to determine the strength of trapezoidally corrugated webs can fail with respect to three different buckling modes: local, global, and interactive shear buckling. Shear buckling capacity equations based on classical and orthotropic plate buckling theories have been proposed,but these equations show some differences. In this paper, geometric parameters that influence interactive shear buckling behavior with interaction effects are identified via extensive bifurcation buckling analysis using the finite element meth.

A Simple Method of Vibration Analysis of Speical Orthotropic Plate with A Pair of Opposite Edges Simply Supported and the Other Pair of Opposite Edges Free (양단단순-타단자유인 특별직교이방성 적층복합판의 간편한 진동해석)

  • 김덕현;이정호;홍창우;박제선
    • Composites Research
    • /
    • v.12 no.4
    • /
    • pp.33-41
    • /
    • 1999
  • In this paper, a simple but accurate method of vibration analysis of structural elements with or without attached mass/masses is presented. The method used has been developed by D.H., Kim since 1974. This method is very effective for the plates with arbitrary conditions and irregular sections. This method is applied to the special orthotropic plate with two opposite edges simply supported and the other two opposite edges free. Such plate represents the most of the simply supported bridges/decks, including concrete and girders-cross beam systems. Detailed illustration is given for beams and plates for easy understanding. Some laminate orientation for which the special orthotropic equations can be applied are identified.

  • PDF

Effects of Bridge Bearings by Structure-Track Interaction for Continuous Bridge applied CWR with Rail Expansion Joint under Temperature Load (레일신축이음 설치된 장대레일 적용 연속교의 구조물-궤도 상호작용에 의한 온도하중이 교량 받침에 미치는 영향)

  • Chung, Jee-Seung;Lee, Jong-Soon
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.5
    • /
    • pp.54-61
    • /
    • 2010
  • The additional axial force of CWR(continuous welded rail) is occurred by structure-track interaction, in reverse, fixed supports of structure are applied the large load by that. Ratio of load which transferred on support through the bridge superstructure with one-side REJ by acceleration and braking load are stated in High-Speed Rail Design Criteria(2005). On the other hand the horizontal forces of support delivered to the load due to thermal loads has been no report about the criteria. Therefore, this study was performed the review of the reaction and displacement on support by structure-track interaction in a special bridge(composite brdiges, 45+55+55+45=200m) with REJ acting on the temperature load. As a result, because fixed support of a special bridge or a continuous bridge with REJ under the temperature load which is constant load has been acted the large lateral load by structure-track interaction, when determining the fixed bearing capacity of structure should be reflected in the results to secure the safety of structures was confirmed.

The structural performance of axially loaded CFST columns under various loading conditions

  • Huang, Fuyun;Yu, Xinmeng;Chen, Baochun
    • Steel and Composite Structures
    • /
    • v.13 no.5
    • /
    • pp.451-471
    • /
    • 2012
  • Concrete filled steel tube (CFST) structures have been used widely in high-rise buildings and bridges due to the efficiency of structurally favourable interaction between the steel tube and the concrete core. In the current design codes only one loading condition in the column members is considered, i.e., the load is applied on the steel tube and concrete core at the same time. However, in engineering practice the tube structures may be subjected to various loading conditions such as loading on the concrete core only, preloading on the steel tube skeleton before filling of concrete core, and so on. In this research, a series of comparative experiments were carried out to study the structural performance of concrete filled circular steel tube columns subject to four concentric loading schemes. Then, a generalized prediction method is developed to evaluate the ultimate load capacity of CFST columns subject to various loading conditions. It is shown that the predictions by the proposed method agree well with test results.

The Clinical Application of an All Ceramic Bridge -A Copy Milling(Celay) Technique (Copy Milling(Celay) System을 이용한 All Ceramic Bridge 임상 증례)

  • Kim, Dae-Hyun
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.9 no.1
    • /
    • pp.82-90
    • /
    • 2000
  • In esthetic dentistry, color and strength are basic requirements for the long-term success of the restorative materials. Several all ceramic systems have been introduced to esthetic dentistry recently. However, the inherent natures of ceramic material, the application of all ceramic system is mainly limited to single tooth restorations. With the improvement of material science, the alumina and zirconia/alumina composite power and block can be applied to fabrication of all ceramic bridges. The conventional inceram core fabrication takes time for sintering however, the shaping of block with a copy milling machine can reduce great amount of time. The block is easy to manipulate and prepare in any shape accurately. This clinical report demonstrates the application of all ceramic ante rior 3 unit bridge with a alumina block in CELAY system.

  • PDF

Behavior of Steel Box Girder Bridge According to the Placing Sequences of Concrete Slab (I) (강합성 상자형 교량의 바닥판 타설에 따른 거동 연구(I) - 해석모델 및 현장실험 -)

  • Kwak, Hyo Gyoung;Seo, Young Jae;Jung, Chan Mook;Park, Young Ha
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.2 s.45
    • /
    • pp.123-131
    • /
    • 2000
  • In this study, both experimental and analytical study for behavior of the existing composite steel box girder bridges, constructed along with the procedure of continuous placing slab, are conducted to establish the validity of the proposed model. The layer approach is adopted to determine the equilibrium condition in a section to consider the different material properties and concrete cracking across the sectional depth, and the beam element stiffness is constructed on the basis of the assumed displacement field formulation and the 3-points Gaussian Integration. In addition, the effects of creep and shrinkage of concrete for time-dependent behavior of the bridge are taken into consideration. Finally, both analytical and experimental results are compared.

  • PDF

Application for a BWIM Algorithm Using Density Estimation Function and Average Modification Factor in The Field Test (밀도추정함수와 평균보정계수를 이용한 BWIM 알고리즘의 현장실험 적용)

  • Han, Ah Reum Sam;Shin, Soobong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.70-78
    • /
    • 2011
  • The paper aims at developing a more reliable and accurate BWIM(Bridge Weigh-In-Motion) algorithm using measured strain data and examining its efficiency with various tests on bridges. It proposes a BWIM algorithm using density estimation function and average modification factor for moment-strain relationship. Density estimation function has been proved to be reliably applied when multiple axle loads are estimated. An average modification factor is applied to minimize overall error that can be encountered between theoretically computed moments and measured strains at multiple locations in a bridge. The developed algorithm has been successfully examined through numerical simulations, laboratory tests, and also by field tests on a multi-girder composite bridge.

Design and Construction Method Considering Turnout for High-speed on The Bridge with Concrete Track (콘크리트궤도에 고속분기기 설치를 고려한 교량설계 및 시공기법)

  • Kim, In-Jae;Oh, Sei-Young;Joo, Hwan-Joong
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.71-79
    • /
    • 2008
  • The concrete track is being used at the Phase II of the Kyeongbu High Speed Railway and New Constructed Honam High Speed Railway. When it makes a decision of bridge type, It has to consider about longitudinal forces of Continuous Welded Rail, Displacement at the end of bridges, Up-lift forces for fastener on the track. If it is installed turnout on the bridge, There is likelihood of the deck twist by applying the each difference longitudinal forces at the 4 each rails and the buckling by concentration of rail stress at the turnout. Moreover, If it is installed turnout on the continuous bridge and REJ(Rail Expansion Joint) on the main track or turnout track. It is hard to keep a safety for rail because of coming to twist or folding at the expansion of deck on the turnout track. Therefore when it is a design of bridge with turnout. It need to take bridge type to minimize an additional axial force and a displacement at the turnout. This paper makes a study of the composite steel arch bridge that is able to resolve criteria requirements of safety for track with turnout and suggest a helpful design method for bridge considering track with turnout by being based on design and construction method of Eonyang Bridge at the north part of Ulsan Station in Phase II of the Kyeongbu High Speed Railway.

  • PDF

Minimum Thickness of Long Span RC Deck Slabs for Composite 2-girder Bridges Designed by KL-510 Load Model (KL-510 하중모형을 적용한 강합성 2거더교 RC 장지간 바닥판의 최소두께)

  • Park, Woo-Jin;Hwang, Hoon-Hee
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.3
    • /
    • pp.72-78
    • /
    • 2014
  • The minimum thickness of long-span deck slab is proposed by checking the limit state according to the Korean highway bridge design code(limit state design). Both minimizing thickness and ensuring safety of deck slab are important design factors to increase a competitive price of the long span deck slabs. The required thicknesses for satisfying flexural capacity, preventing punching shear failure and limiting deflection were calculated by considering KL-510 load model which has increased total load compared to DB 24 from 432 kN to 510 kN. The results of the required thickness for various limit states were compared to propose the minimum thickness as a function of span length of deck slabs. The proposed minimum thickness is influenced by satisfying flexural capacity and limiting deflection. It turns out to be similar compared to the results of the previous study by ultimate strength design method even if the live load model was increased in total weights.