• Title/Summary/Keyword: composite bridges

Search Result 443, Processing Time 0.025 seconds

Simplified Load Distribution Factor Equation for the Design of Composite Steel Girder Bridges (강합성교 설계를 위한 하중분배계수 간략식)

  • Chung, Wonseok
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.2 s.75
    • /
    • pp.131-138
    • /
    • 2005
  • The AASHTO wheel load distribution factor (LDF) equation has been with us since 1931 and has undergone minor modifications. In 1994, an entirely new procedure was introduced in the AASHTO LRFD code based on parametric studies and finite element analyses. However, this LDF equation involves a longitudinal stiffness parameter, the design of which is not initially known. Thus, an iterative procedure is required to correctly determine the LDF value. The increased level of complexity puts undue burden on the designer resulting in a higher likelihood for misinterpretation and error. In this study, based on current AASHTO LRFD framework, a new simplified equation is developed that does not require an iterative procedure. A total of 43 representative composite steel girder bridges are selected and analyzed using a finite element model.The new simplified equation produces LDF values that are always conservative when compared to those obtained from the finite element analyses and are generally greater than the LDF obtained using AASHTO LRFD specification. Therefore, the proposed simplified equation is expected to streamline the determination of LDF for bridge design without sacrificing safety.

A Numerical and Experimental Study on Structural Performance of Simplified Composite Steel I-Beam Bridge (초간편 H형강 강합성 교량의 성능평가를 위한 수치해석 및 실험 연구)

  • Park, Jong Sup;Kim, Jae Heung;Lee, Son Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3A
    • /
    • pp.161-169
    • /
    • 2012
  • This paper presents the safety and strength of simplified composite H-beam panel bridges (SCHPBs) using 3-dimentional finite-element program, ABAQUS (2007) and experimental tests. Two finite-element models (one-steel-girder-and-composite-deck model and four-steel-girder-and-wide-composite-deck model) were reviewed to predict the strength and load distribution factor (LDF) values of the composite bridges. Based on the results of the finite-element analyses, the behaviors of the two models were investigated, and deflection and strain gauges for the experimental specimens were set up to obtain the ultimate strengths and the LDF values. The ultimate strength of the one-steel-girder-and-composite-deck specimen was estimated to be 840 kN. The yield and plastic moments of the four-steel-girder-and-wide-composite-deck specimen were obtained to be 2.4 and 4.1 times the design moment based on the live loading condition of the Korea Bridge Design Specifications (2005). The SCHPB were found to have enough strength for safety under and after construction.

An Experimental Study on Reusing of Waste Materials in Ligh-Weigh Composite Bridge Deck for Civil Structures (폐기물의 재이용과 경량 합성 상판 개발을 위한 실험적 연구)

  • 김경진;박제선;민창동;오오다도시아끼
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.5
    • /
    • pp.123-130
    • /
    • 1994
  • In this paper, a development of composite bridge decks was proposed for design of civil and architectural structures to reuse the empty cans and plastics etc. The experimental specimens were made of rigid foamed urethane taking advantage of corrosionlessness in steel bridge decks, and simplicity in the field construction. 'Therefore, introducing the empty cans into the rigid foamed urethane, this experimentation have been carried out to demonstrate and evaluate the structural behavior by means of loading and vibration tests in composite bridge decks. Consequently, it was possible that had a good effect on the structural behavior by absorbing the strain due to the low elasticity of rigid foamed urethane, and not influence to cans in composite bridges.

Crack Width Control and Flexural Behavior of Continuous Composite Beams (연속합성보의 균열폭 제어와 휨거동 평가)

  • Shim, Chang Su;Kim, Hyun Ho;Yun, Kwang Jung
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.2 s.75
    • /
    • pp.195-206
    • /
    • 2005
  • Experimental research was performed on the 6m-6m two-span, continuous composite beams. Background research for the crack width control of continuous composite bridges in the Eurocode-4 is reviewed and equationsfor the calculation of crack width considering tension stiffening are presented. The behavior of the continuous composite beams was investigated using the initial and stabilized cracking process of the concrete slab in tension. Test results showed that the current requirement of minimum reinforcement for ductility in Korea Highway Bridge Design Codes could be reduced. The flexural stiffness of cracked continuous composite beams can be evaluated by the uncracked section analysis until the stabilized cracking stage. An empirical equation for the relationship between the stress of tensile reinforcements and crack width was obtained from the test results.

Integration of in-situ load experiments and numerical modeling in a long-term bridge monitoring system on a newly-constructed widened section of freeway in Taiwan

  • Chiu, Yi-Tsung;Lin, Tzu-Kang;Hung, Hsiao-Hui;Sung, Yu-Chi;Chang, Kuo-Chun
    • Smart Structures and Systems
    • /
    • v.13 no.6
    • /
    • pp.1015-1039
    • /
    • 2014
  • The widening project on Freeway No.1 in Taiwan has a total length of roughly 14 kilometers, and includes three special bridges, namely a 216 m long-span bridge crossing the original freeway, an F-bent double decked bridge in a co-constructed section, and a steel and prestressed concrete composite bridge. This study employed in-situ monitoring in conjunction with numerical modeling to establish a real-time monitoring system for the three bridges. In order to determine the initial static and dynamic behavior of the real bridges, forced vibration experiments, in-situ static load experiments, and dynamic load experiments were first carried out on the newly-constructed bridges before they went into use. Structural models of the bridges were then established using the finite element method, and in-situ vehicle load weight, arrangement, and speed were taken into consideration when performing comparisons employing data obtained from experimental measurements. The results showed consistency between the analytical simulations and experimental data. After determining a bridge's initial state, the proposed in-situ monitoring system, which is employed in conjunction with the established finite element model, can be utilized to assess the safety of a bridge's members, providing useful reference information to bridge management agencies.

Camber Management of Continuous Preflex Girder Bridges (연속형 프리플렉스 합성거더 교량의 캠버 관리)

  • Kim, Jong-In;Choi, Young-Wha
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.4
    • /
    • pp.433-441
    • /
    • 2004
  • This paper presents a strategy for the quality assurance of the continuous preflex composite girder bridge through the camber management of the girder during construction. The construction stages which require welding, balanced preflexion loads at the ends, etc. may cause unexpected large deformation to the preflex girder. Furthermore, these defects can be detected by measurements and analyses of the girder behavior which is sometimes time consuming. In the present study, preflex girder's camber data at equally spaced nodes in each construction stage are obtained and analyzed for the quality control of thee span continuous preflex girder composite bridge.

  • PDF

Effects of Flexural Strengths of Double Composite Box Girder Bridges on Different Concrete Depths (이중합성 박스 거더교의 콘크리트 타설 두께에 따른 휨강도 변화)

  • 신동훈;성원진;심기훈;최지훈;이용학
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.285-290
    • /
    • 2002
  • The double composite box girder is a structural system filled with concrete at the bottom of the steel box in the negative moment region increasing the flexural strengths. Flexural strengths of the double composite steel box girders are investigated through a series of the experimental tests and the numerical analysis. The experimental tests are performed on the three kinds of steel box girders with the different concrete depths including loom, 15cm, and 20cm. Moment-curvature relations are calculated based on the sectional analysis method describing the nonlinear natures of concrete and steel. In the finite element analysis the nonlinear nature of concrete is described based on the three dimensional four-parameter constitutive model recently developed and that of steel is described based on von Mises failure criterion. The ultimate flexural capacities of the box girders predicted using sectional analysis and finite element analysis show good agreement with those of the experiments.

  • PDF

Signal Characteristics of Fiber Brags Grating due to Internal Strain Gradient (광섬유 브래그 격자의 내부 변형률 구배로 인한 신호 특성)

  • 강동훈;김대현;홍창선;김천곤
    • Composites Research
    • /
    • v.15 no.4
    • /
    • pp.32-36
    • /
    • 2002
  • Recently, the applications of composite materials become broader to civil engineering as well as mechanics and aerospace engineering. Cracks on the civil structures like bridges can cause stress concentration, which induces Peak splitting of fiber Bragg grating sensor and it makes strain measurements difficult. In this study, 4-point bending test of concrete beam with initial crack reinforced by composite patch was conducted in order to verify the effects of the stress concentration on the peak signal of FBG sensor and a novel method for signal maintenance.

Nonlinear Finite Element Analysis of Composite Girder with Concrete Infilled Tube (콘크리트 충전 강관을 갖는 프리스트레스트 합성형 거더의 강-콘크리트 계면 거동)

  • Shin, Dong-Hun;Kim, Young-Hoon;Lee, Ta;Kang, Byeong-Su;Lee, Yong-Hak
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.386-389
    • /
    • 2006
  • Prestressed composite girder bridges with concrete infilled steel tube at negative flexural moment region takes the advantages of enhancing local buckling and flexural resistances resulting from the lateral confining effect of concrete due to the interactive reaction in the interface layer of steel tube and concrete. The interface behavior in concrete infilled tube of the test composite girder is analyzed by 8-node zero thickness interface finite element combined with 3-D. elastoplastic concrete constitutive model and 3-D. elastoplastic Mindlin shell element. The interface effects between infillled concrete and steel tube are investigated through the comparision of the experimental and numerical results.

  • PDF

Behavior of Members in the Unit Model of Steel-Concrete Hybrid Deck for Bridges (교량용 강ㆍ콘크리트 합성 바닥판 단위모델의 부재별 거동 특성)

  • 정광회;정연주;김병석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.493-498
    • /
    • 2003
  • The 3D nonlinear analysis for steel-concrete hybrid deck is carried out by utilizing 2D plane interface element. The effect of the slip occurred between steel and concrete can be modeled by this element. This analysis focuses on not only global behavior of steel-concrete hybrid deck but also local behaviors of members of it such as lower steel plate, I-beam, and concrete which are varied by slip modulus. In this analysis, it was founded that the limit slip modulus could classify the states of steel-concrete hybrid deck into three parts such as full-composite, partial-composite, and non-composite, considering the behavior of lower steel plate, I-beam, and concrete at the mid span and the support as well as the yield load and ultimate load of it.

  • PDF